- (0) Par hypothèse, le quotient $\frac{u_n}{v_n}$ tend vers 1 en $+\infty$. La fonction racine carrée étant continue, on a donc $\sqrt{\frac{u_n}{v_n}} \longrightarrow 1$, c'est-à-dire $\frac{\sqrt{u_n}}{\sqrt{v_n}} \longrightarrow 1$, autrement dit $\sqrt{u_n} \sim \sqrt{v_n}$.
- (1) Pour tout $n \in \mathbb{N}$, la fonction $t \mapsto \sin^n t$ est continue sur $[0; \frac{\pi}{2}]$, donc W_n est bien définie.
- (2) On effectue le changement de variables proposé : $u = \frac{\pi}{2} t$ et du = -dt. Alors $t = \frac{\pi}{2} u$, donc

$$W_n = \int_0^{\pi/2} \cos^n t \, dt = \int_{\pi/2}^0 \cos^n \left(\frac{\pi}{2} - u\right) (-du).$$

On permute les bornes, ce qui neutralise le signe – de –du. Enfin, on utilise la formule trigonométrique $\cos(\frac{\pi}{2}-) = \sin u$. On a donc la formule demandée :

$$W_n = \int_0^{\pi/2} \sin^n u \, \mathrm{d}u.$$

(3) Le calcul de W_0 et W_1 est direct :

$$W_0 = \int_0^{\pi/2} \cos^0 t \, dt = \int_0^{\pi/2} dt = \frac{\pi}{2};$$

$$W_1 = \int_0^{\pi/2} \cos^1 t \, dt = \int_0^{\pi/2} \cos t \, dt = \left[\sin t\right]_0^{\pi/2} = 1 - 0 = 1.$$

Pour W_2 , on peut linéariser à l'aide de la formule $\cos^2 t = \frac{1+\cos(2t)}{2}$ ou trouver une équation vérifiée par W_2 à l'aide d'une intégration par parties. Je détaille la deuxième solution car c'est la plus inhabituelle : la fonction $t \mapsto \cos t$ est de classe \mathcal{C}^1 , donc continue, donc par intégration par parties,

$$W_2 = \int_0^{\pi/2} \widehat{\cos t} \underbrace{\cos t} \, dt = \underbrace{\left[-\cos t \sin t \right]_0^{\pi/2}}_{=0} - \int_0^{\pi/2} -\sin^2 t \, dt = \int_0^{\pi/2} \sin^2 t \, dt$$

(remarquons que ce premier résultat pouvait aussi être établi à l'aide de la question (2)). Mais $\sin^2 t = 1 - \cos^2 t$, donc

$$W_2 = \int_0^{\pi/2} \sin^2 t = \int_0^{\pi/2} (1 - \cos^2 t) dt = \underbrace{\int_0^{\pi/2} dt}_{-\pi/2} - \underbrace{\int_0^{\pi/2} \cos^2 t dt}_{=W_2}.$$

Au final, on a donc $W_2 = \frac{\pi}{2} - W_2$, donc $2W_2 = \frac{\pi}{2}$, d'où $W_2 = \frac{\pi}{4}$.

(4) Pour tout $t \in [0; \frac{\pi}{2}]$, $\cos t \in [0; 1]$. En particulier, $\cos t \ge 0$ donc $\cos^n t \ge 0$. Par positivité de l'intégrale (car $0 \le \frac{\pi}{2}$), on en déduit que $W_n \ge 0$.

De plus, comme $\cos t \in [0;1]$, alors $\cos^{n+1} t \leq \cos^n t$. Par croissance de l'intégrale, on en déduit donc que $W_{n+1} \leq W_n$.

La suite $(W_n)_{n\in\mathbb{N}}$ est donc décroissante et minorée par 0. On en déduit qu'elle converge vers une limite positive ou nulle.

(5) Soit $n \in \mathbb{N}$. La fonction $t \mapsto \cos t$ est continue et la fonction $t \mapsto \cos^{n+1} t$ est de classe \mathcal{C}^1 donc, par intégration par parties,

$$W_{n+2} = \int_0^{\pi/2} \cos t \cos^{n+1} t \, dt = \underbrace{\left[\sin t \cos^{n+1} t\right]_0^{\pi/2}}_{=0} - \int_0^{\pi/2} \sin t (n+1)(-\sin t) \cos^n t \, dt$$
$$= (n+1) \int_0^{\pi/2} \sin^2 t \cos^n t \, dt = (n+1) \int_0^{\pi/2} (1-\cos^2 t) \cos^n t \, dt$$
$$= (n+1) \int_0^{\pi/2} \cos^n t \, dt - (n+1) \int_0^{\pi/2} \cos^{n+2} t \, dt = (n+1)(W_n - W_{n+2}).$$

On en déduit que $(n+2)W_{n+2} = (n+1)W_n$, d'où l'égalité demandée.

(6) Soit $n \in \mathbb{N}$. L'inégalité de gauche est une conséquence immédiate de la décroissance de la suite $(W_n)_{n \in \mathbb{N}}$ (question (4)).

Pour ce qui est de l'inégalité de droite, d'après la question précédente, on peut écrire $W_n = \frac{n+2}{n+1}W_{n+2}$. Mais la suite $(W_n)_{n\in\mathbb{N}}$ étant décroissante, on a $W_{n+2} \leq W_n$ donc, le facteur $\frac{n+2}{n+1}$ étant positif, $\frac{n+2}{n+1}W_{n+2} \leq \frac{n+2}{n+1}W_{n+1}$.

On a donc l'encadrement demandé. En divisant par W_{n+1} (qui est strictement positif), on obtient

 $1 \leq \frac{W_n}{W_{n+1}} \leq \frac{n+2}{n+1}.$

Il est clair que les membres de gauche et de droite tendent vers 1 en $+\infty$. Par encadrement, on en déduit que $\frac{W_n}{W_{n+1}} \longrightarrow 1$, autrement dit $W_n \sim W_{n+1}$.

(7) Soit $p \in \mathbb{N}$. On va utiliser de manière répétée la relation établie à la question (5) :

$$W_{2p} = \frac{2p-1}{2p}W_{2p-2} = \frac{(2p-1)(2p-3)}{2p(2p-2)}W_{2p-4} = \dots = \frac{(2p-1)(2p-3)\cdots 1}{2p(2p-2)\cdots 2}W_0.$$

On multiplie au numérateur et au dénominateur par $2p(2p-2)\cdots 2$:

$$W_{2p} = \frac{2p(2p-1)(2p-2)\cdots 2\times 1}{(2p(2p-2)\cdots 2)^2}W_0 = \frac{(2p)!}{2^{2p}(p)!^2}\frac{\pi}{2}.$$

De même,

$$W_{2p+1} = \frac{2p}{2p+1}W_{2p-1} = \dots = \frac{2p(2p-2)\cdots 2}{(2p+1)(2p-1)\cdots 3}W_1 = \frac{2^{2p}(p!)^2}{(2p+1)!}\cdot 1.$$

(8) Si n est pair, on peut écrire n=2p. Dans ce cas, d'après la question précédente,

$$W_n W_{n+1} = W_{2p} W_{2p+1} = \frac{(2p)!}{2^{2p}(p)!^2} \frac{2^{2p}(p!)^2}{(2p+1)!} \frac{\pi}{2} = \frac{(2p)!}{(2p+1)!} \frac{\pi}{2} = \frac{\pi}{2(2p+1)} = \frac{\pi}{2(n+1)}.$$

De même, si n est impair, on écrit n = 2p + 1, et

$$W_n W_{n+1} = W_{2p+1} W_{2p+2} = \frac{2^{2p} (p!)^2}{(2p+1)!} \frac{(2p+2)!}{2^{2p+2} (p+1)!^2} \frac{\pi}{2} = \frac{2p+2}{4(p+1)^2} \frac{\pi}{2} = \frac{\pi}{2(2p+2)} = \frac{\pi}{2(n+1)!} \frac{\pi}{2} = \frac{\pi}{2(2p+2)} = \frac{\pi}$$

Ainsi, pour tout $n \in \mathbb{N}$, $W_n W_{n+1} = \frac{\pi}{2(n+1)}$.

- (9) D'après la question précédente, pour n tendant vers $+\infty$, on a $W_nW_{n+1} \sim \frac{\pi}{2n}$.
- (10) On a montré à la question (6) que $W_n \sim W_{n+1}$. Alors $W_n W_{n+1} \sim W_n^2$. On a donc établi que $W_n^2 \sim \frac{\pi}{2n}$. Mais d'après la question (0), les deux membres de l'équivalence étant positifs, on peut passer à la racine carrée dans les équivalents, et on a donc

$$W_n \sim \sqrt{\frac{\pi}{2n}}$$
.