Exercice I. Intégration

 $(1) \mapsto -\frac{1}{2}\cos(t^2)$ est une primitive de $t\mapsto t\sin(t^2)$ sur ${\bf R},$ donc

$$A = \int_0^{\sqrt{\pi}} t \sin(t^2) dt = -\frac{1}{2} \left[\cos(t^2) \right]_0^{\sqrt{\pi}} = -\frac{1}{2} (-1 - 1) = 1.$$

Pour B, on procède par intégration par parties, sachant que $t \mapsto t^4$ est continue et $t \mapsto \ln t$ est de classe \mathcal{C}^1 sur [1;e]. On a donc

$$\int_{1}^{e} \underbrace{t^4} \underbrace{\ln t} \, \mathrm{d}t = \left[\frac{t^5}{5} \ln t \right]_{1}^{e} - \int_{1}^{e} \frac{t^5}{5} \cdot \frac{1}{t} \, \mathrm{d}t = \frac{e^5}{5} - \frac{1}{5} \int_{1}^{e} t^4 \, \mathrm{d}t = \frac{e^5}{5} - \frac{1}{5} \left[\frac{t^5}{5} \right]_{1}^{e} = \frac{4e^5 + 1}{25}.$$

(2) Pour tout $x \in]-1; 1[$,

$$\frac{a}{1-x} + \frac{b}{1+x} + \frac{c}{(1+x)^2} = \frac{a(1+x)^2 + b(1-x)(1+x) + c(1-x)}{(1-x)(1+x)^2}$$
$$= \frac{(a-b)x^2 + (2a-c)x + a + b + c}{(1-x)(1+x)^2}.$$

Ainsi, par identification,

$$\left(\forall x \in]-1; 1[\ f(x) = \frac{a}{1-x} + \frac{b}{1+x} + \frac{c}{(1+x)^2} \right) \\ \iff \begin{cases} a-b=0 \\ 2a-c=0 \\ a+b+c=1 \end{cases} \iff \begin{cases} a = \frac{1}{4} \\ b = \frac{1}{4} \\ c = \frac{1}{2} \end{cases}$$

Or, sur]-1;1[, on a les primitives suivantes :

- $x \mapsto \ln(1-x) + c$ primitive de $x \mapsto \frac{1}{1-x}$;
- $x \mapsto \ln(1+x) + c$ primitive de $x \mapsto \frac{1}{1+x}$;
- $x \mapsto -\frac{1}{1+x}$ primitive de $x \mapsto \frac{1}{(1+x)^2}$.

On en déduit que toutes les primitives de f sur]-1;1[sont les fonctions

$$x \mapsto \frac{1}{4}\ln(1-x) + \frac{1}{4}\ln(1+x) - \frac{1}{2(1+x)} + c, \quad c \in \mathbf{R}.$$

(3) On réalise le changement de variables proposé : $u = \tan \frac{t}{2}$ et $du = \frac{1}{2}(1 + \tan^2 \frac{t}{2})dt$, autrement dit $dt = \frac{2du}{1+u^2}$. On peut par ailleurs écrire $\sin t = \frac{2u}{1+u^2}$. Ainsi, par formule de changement de variables :

$$\int_0^{\pi/2} \frac{\mathrm{d}t}{1+\sin t} = \int_0^1 \frac{2\mathrm{d}u}{1+u^2} \frac{1}{1+\frac{2u}{1+u^2}} = \int_0^1 \frac{2\mathrm{d}u}{1+u^2+2u}$$
$$= 2\int_0^1 \frac{\mathrm{d}u}{(1+u)^2} = 2\left[-\frac{1}{1+u}\right]_0^1 = 1.$$

EXERCICE II. ALGÈBRE LINÉAIRE

(1) Il est clair que $F \subset \mathbf{R}^4$ et que $0 \in F$. Par ailleurs si $u_1 = (x_1, y_1, z_1, t_1)$ et $u_2 = (x_2, y_2, z_2, t_2)$ appartiennent à F et si $\lambda, \mu \in \mathbf{R}$, alors $\lambda x_1 + \mu x_2 + \lambda y_1 + \mu y_2 = 0$ et $\lambda x_1 + \mu x_2 + \lambda z_1 + \mu z_2 = 0$, donc $\lambda u_1 + \mu u_2 \in F$. Ainsi, F est bien un sev de \mathbf{R}^4 .

Autre démonstration : $F = \text{Ker } \varphi \cap \text{Ker } \psi$, où φ et ψ sont deux formes linéaires définies sur \mathbb{R}^4 par $\varphi(x, y, z, t) = x + y$ et $\psi(x, y, z, t) = x + z$.

(2) Soit $u = (x, y, z, t) \in \mathbf{R}^4$. Alors $u \in F$ ssi y = -x et z = -x, ssi on peut écrire

$$u = \begin{pmatrix} x \\ -x \\ -x \\ z \end{pmatrix} = x \begin{pmatrix} 1 \\ -1 \\ -1 \\ 0 \end{pmatrix} + t \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}.$$

Ainsi, $F = \text{Vect}\begin{bmatrix} 1 \\ -1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$. Il est facile de voir que ces deux vecteurs

forment une famille libre; il s'agit donc d'une base de F. Le sous-espace F est donc de dimension 2.

(3) On ajoute successivement deux vecteurs à la base trouvée. D'abord, un premier /1

vecteur n'appartenant pas à F, par exemple $\begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$. Puis un vecteur n'apparte-

nant pas à Vect
$$\begin{bmatrix} \begin{pmatrix} 1 \\ -1 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$
, par exemple $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}$. On vérifie facilement

que cette famille de quatre vecteurs est libre; comme \mathbb{R}^4 est de dimension 4, il s'agit bien d'une base de \mathbb{R}^4 .

(4) Soient $\lambda, \mu\nu \in \mathbf{R}$. On suppose que $\lambda u_1 + \mu u_2 + \nu u_3 = 0$. Alors

$$\begin{cases} \lambda + \mu - \nu = 0 \\ \lambda + 2\mu = 0 \\ \lambda + 3\mu - \nu = 0 \\ \lambda + 4\mu = 0 \end{cases}$$

En soustrayant les lignes 2 et 4, on trouve $\mu=0$ donc $\lambda=0$. La ligne 1 ou 3 permet d'en déduire $\nu=0$. Il s'agit donc bien d'une famille libre.

- (5) Par définition de G, (u_1, u_2, u_3) est une famille génératrice de G. On a montré à la question précédente que c'est une famille libre, c'est donc une base de G. Comme elle est constituée de trois vecteurs, on en déduit que dim G = 3.
- (6) Soit $u \in F \cap G$. Comme $u \in G$, il existe $\lambda, \mu, \nu \in \mathbf{R}$ tels que $u = \lambda u_1 + \mu u_2 + \nu u_3$. On peut donc écrire

$$u = \begin{pmatrix} \lambda + \mu - \nu \\ \lambda + 2\mu \\ \lambda + 3\mu - \nu \\ \lambda + 4\mu \end{pmatrix}$$

Mais par ailleurs, u est un vecteur de F, donc ses deuxième et troisième coordonnées doivent être égales à l'opposé de la première, on en déduit le système

$$\left\{ \begin{array}{l} \lambda + 2\mu = -(\lambda + \mu - \nu) \\ \lambda + 3\mu - \nu = -(\lambda + \mu - \nu) \end{array} \right. \iff \left\{ \begin{array}{l} 2\lambda + 3\mu - \nu = 0 \\ 2\lambda + 4\mu - 2\nu = 0 \end{array} \right. \iff \left\{ \begin{array}{l} \lambda = -\nu \\ \mu = \nu \end{array} \right.$$

Au final, $u=\lambda u_1+\mu u_2+\nu u_3=\nu(-u_1+u_2+u_3)$. Ainsi, tous les éléments de $F\cap G$ sont des multiples du vecteur

$$u_4 = -u_1 + u_2 + u_3 = \begin{pmatrix} -1\\1\\1\\3 \end{pmatrix}$$

On a donc $F \cap G \subset \text{Vect}(u_4)$. Par ailleurs $u_4 \in G$ (puisque c'est une combinaison linéaire de u_1, u_2 et u_3) et $u_4 \in F$ (puisque ses deuxième et troisième coordonnée sont l'opposé de sa première). On a fonc $u_4 \in F \cap G$ donc $\text{Vect}(u_4) \subset F \cap G$.

On a donc montré que $F \cap G = \text{Vect}(u_4)$. La famille composée de l'unique vecteur u_4 est libre, puisque $u_4 \neq 0$. Il s'agit donc d'une base de $F \cap G$ (qui est donc de dimension 1).

- (7) D'après la formule de Grassmann, $\dim(F+G) = \dim F + \dim G \dim(F\cap G)$. D'après les questions précédentes, $\dim F = 2$, $\dim G = 3$ et $\dim(F\cap G) = 1$. On en déduit que $\dim(F+G) = 4$. Or F et G sont des sev de \mathbf{R}^4 donc F+G est un sev de \mathbf{R}^4 . Comme il est de dimension 4, on a donc $F+G=\mathbf{R}^4$.
- (8) On n'a pas $F \cap G = \{0\}$ donc la somme F + G n'est pas directe : d'après la question précédente, on peut écrire tout vecteur de \mathbf{R}^4 comme somme d'un vecteur de F et d'un vecteur de G. En revanche, cette écriture n'est pas unique en général.

Problème. Polynômes et nombres de Bernoulli

A. Polynômes de Bernoulli.

(1) En premier lieu, l'application ψ est bien définie puisque les fonctions polynomiales sont continues. Pour tout $P \in \mathbf{R}[X]$, $\psi(P) \in \mathbf{R}$. Enfin, si $P, Q \in \mathbf{R}[X]$,

$$\psi(\lambda P + \mu Q) = \int_0^1 (\lambda P(t) + \mu Q(t)) dt = \lambda \int_0^1 P(t) dt + \mu \int_0^1 Q(t) dt = \lambda \psi(P) + \mu \psi(Q).$$

L'application ψ est donc bien une forme linéaire sur $\mathbf{R}[X]$.

- (2) $H = \text{Ker } \psi$, c'est donc un sev de $\mathbf{R}[X]$ (noter que, $\mathbf{R}[X]$ n'étant pas de dimension finie, on ne peut pas dire que H est un hyperplan).
- (3) Commençons par montrer que la somme $H + \mathbf{R}_0[X]$ est directe. Comme il s'agit d'une somme de deux sous-espaces, il suffit de montrer que $H \cap \mathbf{R}_0[X] = \{0\}$. Soit donc $P \in H \cap \mathbf{R}_0[X]$. Comme $P \in \mathbf{R}_0[X]$, il s'agit d'un polynôme constant, égal à un certain $a \in \mathbf{R}$. Mais comme $P \in H$, on doit avoir $\int_0^1 P(t) \, \mathrm{d}t = 0$, c'est-à-dire $\int_0^1 a \, \mathrm{d}t = 0$, autrement dit a = 0. Ainsi, P = 0. La somme $\mathbf{R}_0[X] + H$ est donc directe.
 - Montrons maintenant que $\mathbf{R}_0[X] + H = \mathbf{R}[X]$. Évidemment, $\mathbf{R}_0[X] + H \subset \mathbf{R}[X]$, il suffit donc de montrer l'inclusion inverse. Soit $P \in \mathbf{R}[X]$. En suivant l'indication de l'énoncé, on écrit

$$P = \left(P - \int_0^1 P(t) \, dt\right) + \int_0^1 P(t) \, dt.$$

On peut considérer le nombre $\int_0^1 P(t) dt$ comme un polynôme constant. Autrement dit, $\int_0^1 P(t) dt \in \mathbf{R}_0[X]$. Reste à voir que $\left(P - \int_0^1 P(t) dt\right) \in H$. Pour cela, calculons son image par ψ : par linéarité,

$$\psi\left(P - \int_0^1 P(t) dt\right) = \psi(P) - \left(\int_0^1 P(t) dt\right) \psi(1) = \int_0^1 P(t) dt - \int_0^1 P(t) dt = 0.$$

Il s'agit donc bien d'un polynôme de H.

Ainsi, tout polynôme $P \in \mathbf{R}[X]$ peut se décomposer comme somme d'un polynôme de H et d'un polynôme constant, autrement dit $\mathbf{R}[X] = H + \mathbf{R}_0[X]$.

On a donc bien $\mathbf{R}[X] = H \oplus \mathbf{R}_0[X]$.

(4) Soit $P \in \mathbf{R}[X]$. Alors P possède comme primitive un polynôme $Q \in \mathbf{R}[X]$. On a donc bien Q' = P, mais on ne sait pas si $Q \in H$, donc on ne peut pas forcément écrire D(Q) = P. Mais d'après la question précédente, on peut écrire $Q = Q_0 + c$, avec $Q_0 \in H$ et $c \in \mathbf{R}_0[X]$. Alors, par linéarité de la dérivation, $Q'_0 = Q' - c' = Q' = P$. Le polynôme Q_0 est bien un élément de H dont la dérivée est P; autrement dit, c'est un antécédent de P par D.

Ainsi, tout polynôme $P \in \mathbf{R}[X]$ possède un antécédent par D : il s'agit donc d'une fonction surjective.

- (5) Il reste à montrer que D est injective. Soit $P \in \text{Ker } D$. Alors D(P) = 0, soit P' = 0. Le polynôme P est donc constant, autrement dit $P \in \mathbf{R}_0[X]$. Mais, l'application D est définie sur H, donc $\text{Ker } D \subset H$, ainsi $P \in H$. Par conséquent, $P \in H \cap \mathbf{R}_0[X] = \{0\}$ (d'après la question (3)). Le polynome P est donc nul.
 - Ainsi, $\operatorname{Ker} D=0$, donc D est injective. Comme on a montré à la question précédente qu'elle était surjective, il s'agit donc d'un isomorphisme.
- (6) (a) Il s'agit de calculer $\int_0^1 Q(x) dx$, mais ce calcul est délicat car il impliquerait une intégrale d'intégrale... Notons R une primitive du polynôme P. Alors $\int_0^x P(t) dt = R(x) R(0)$. On peut maintenant calculer l'intégrale de Q sur [0;1], en gardant en tête que les termes R(0) et $\int_0^1 (t-1)P(t) dt$ sont des constantes, donc leur intégrale sur [0;1] est égale à eux-même :

$$\int_0^1 Q(x) dx = \int_0^1 R(x) dx - R(0) + \int_0^1 (t-1)P(t) dt.$$

On calcule alors l'intégrale de R par parties : R est de classe C^1 , de dérivée P; la fonction constante égale à 1 est continue, de primitive $x \mapsto x-1$. Alors

$$\int_0^1 R(x) \, \mathrm{d}x = \left[(x-1)R(x) \right]_0^1 - \int_0^1 (x-1)P(x) \, \mathrm{d}x = R(0) - \int_0^1 (x-1)P(x) \, \mathrm{d}x.$$

Mais alors, en substituant dans l'expression de $\int_0^1 Q(x) dx$, on en déduit que $\int_0^1 Q(x) dx = 0$. Autrement dit, $Q \in H$.

- (b) On a montré que $Q \in H$. Alors, φ étant la bijection réciproque de D, on a l'équivalence $Q = \varphi(P) \iff D(Q) = P \iff Q' = P$. D'après le théorème fondamental de l'analyse, $x \mapsto \int_0^x P(t) \, \mathrm{d}t$ est une primitive de P. Par ailleurs, $\int_0^1 (t-1)P(t) \, \mathrm{d}t$ est une constante. On a donc bien, pour tout $x \in \mathbf{R}$, Q'(x) = P(x), ce qui montre que D(Q) = P donc que $Q = \varphi(P)$.
- (7) D'après la question (6)(b), pour tout $n \in \mathbb{N}$, pour tout $x \in \mathbb{R}$,

$$B_{n+1}(x) = \int_0^x P(t) dt + \int_0^1 (t-1)P(t) dt.$$

On a donc, pour tout $x \in \mathbf{R}$,

$$B_1(x) = \int_0^x 1 dt + \int_0^1 (t-1)dt = x - \frac{1}{2},$$

donc $B_1 = X - \frac{1}{2}$. Par suite, pour tout $x \in \mathbf{R}$,

$$B_2(x) = \int_0^x (t - \frac{1}{2}) dt + \int_0^1 (t - 1)(t - \frac{1}{2}) dt = \frac{x^2}{2} - \frac{x}{2} + \int_0^1 (t^2 - \frac{3}{2}t + \frac{1}{2}) dt$$
$$= \frac{x^2}{2} - \frac{x}{2} + \frac{1}{3} - \frac{3}{4} + \frac{1}{2} = \frac{x^2}{2} - \frac{x}{2} + \frac{1}{12},$$

ainsi
$$B_2 = \frac{X^2}{2} - \frac{X}{2} + \frac{1}{12}$$
.

(8) Soit $n \ge 2$. Alors, toujours d'après (6)(b),

$$B_n(1) = \int_0^1 B_{n-1}(t) dt + \int_0^1 (t-1)B_{n-1}(t) dt$$
 et
$$B_n(0) = \int_0^0 B_{n-1}(t) dt + \int_0^1 (t-1)B_{n-1}(t) dt = \int_0^1 (t-1)B_{n-1}(t) dt,$$

donc

$$B_n(1) - B_n(0) = \int_0^1 B_{n-1}(t) dt.$$

Mais, par définition, $B_{n-1} = \varphi(B_{n-2})$ (on peut l'écrire car $n \geq 2$), donc $B_{n-1} \in H$. Ainsi, $\int_0^1 B_{n-1}(t) dt = 0$, autrement dit $B_n(1) = B_n(0)$.

(9) Soit $n \in \mathbb{N}$. Par définition, pour tout $x \in \mathbb{R}$,

$$C_{n+1}(x) = (-1)^{n+1} B_{n+1}(1-x) = (-1)^{n+1} \left(\int_0^{1-x} B_n(t) dt + \int_0^1 (t-1) B_n(t) dt \right).$$

La deuxième intégrale est une constante donc disparait si on dérive C_{n+1} . Dans la première intégrale, on va effectuer le changement de variables u=1-t (du=-dt):

$$(-1)^{n+1} \int_0^{1-x} B_n(t) dt = (-1)^{n+1} \int_1^x B_n(1-u)(-du)$$
$$= \int_1^x (-1)^n B_n(1-u) du = \int_1^x C_n(u) du.$$

Mais alors, en dérivant par raport à x, d'après le théorème fondamental de l'analyse :

$$\left((-1)^{n+1} \int_0^{1-x} B_n(t) \, \mathrm{d}t \right)' = C_n(x),$$

donc $C'_{n+1}(x) = C_n(x)$ pour tout $x \in \mathbf{R}$, autrement dit $C'_{n+1} = C_n$.

(10) Une nouvelle fois, comme on a montré que $C'_{n+1} = C_n$, il s'agit simplement de montrer que $C_{n+1} \in H$. Par définition de C_{n+1} , en effectuant le changement de variables u = 1 - t (du = -dt):

$$\int_0^1 C_{n+1}(t) dt = (-1)^{n+1} \int_0^1 B_{n+1}(1-t) dt$$
$$= (-1)^{n+1} \int_1^0 B_{n+1}(u)(-du) = (-1)^{n+1} \int_0^1 B_{n+1}(u) du,$$

qui est donc nul car $B_{n+1} = \varphi(B_n) \in H$.

Ainsi $C_{n+1} \in H$, donc on peut écrire $C_{n+1} = \varphi(C_n)$.

(11) Montrons par récurrence que, pour tout $n \in \mathbb{N}$, $C_n = B_n$.

Pour n = 0, $C_0(X) = (-1)^0 B_0(1 - X) = B_0(1 - X)$, mais B_0 est constant donc $B_0(1 - X) = B_0(X)$. On a donc $C_0 = B_0$.

Soit $n \in \mathbb{N}$, on suppose que $B_n = C_n$. Alors, par définition, $B_{n+1} = \varphi(B_n)$. Mais, d'après la question (10), $C_{n+1} = \varphi(C_n) = \varphi(B_n)$ par hypothèse de récurrence. On a donc bien $B_{n+1} = C_{n+1}$.

Ainsi, pour tout $n \in \mathbb{N}$, $B_n = C_n$. Autrement dit, pour tout $t \in \mathbb{R}$, $B_n(x) = (-1)^n B_n(1-x)$, ou encore $B_n(1-x) = (-1)^n B_n(x)$ (en multipliant des deux côtés par $(-1)^n$).

(12) Soit $n \in \mathbb{N}^*$. Alors $2n+1 \geq 2$ donc, d'après la question (8), $B_{2n+1}(0) = B_{2n+1}(1)$. Mais en appliquant la question (11) à x = 0, on trouve $B_{2n+1}(1) = (-1)^{2n+1}B_{2n+1}(0) = -B_{2n+1}(0)$. On en déduit $B_{2n+1}(0) = -B_{2n+1}(0)$, donc $B_{2n+1}(0) = 0$. De même pour $B_{2n+1}(1)$.

B. Formule d'Euler-Maclaurin.

(13) Soit $n \geq 2$. On va appliquer le théorème d'intégration par parties, la fonction $f^{(2n)}$ étant continue (puisque f est de classe \mathcal{C}^{2n}) et la fonction B_{2n} de classe \mathcal{C}^1 :

$$J_n = \int_0^1 \underbrace{B_{2n}(t)} \overbrace{f^{(2n)}(t)} dt = \left[B_{2n}(t) f^{(2n-1)}(t) \right]_0^1 - \int_0^1 B'_{2n}(t) f^{(2n-1)}(t) dt.$$

Calculons le crochet

$$\left[B_{2n}(t)f^{(2n-1)}(t)\right]_0^1 = B_{2n}(1)f^{(2n-1)}(1) - B_{2n}(0)f^{(2n-1)}(0),$$

mais comme $n \ge 2$, d'après la question (8) $B_{2n}(1) = B_{2n}(0)$, qui est égal à b_{2n} par définition. Ainsi

$$\left[B_{2n}(t)f^{(2n-1)}(t)\right]_0^1 = b_{2n}\left(f^{(2n-1)}(1) - f^{(2n-1)}(0)\right).$$

Par ailleurs, $B_{2n} = \varphi(B_{2n-1})$ donc $D(B_{2n}) = B_{2n-1}$, autrement dit $B'_{2n} = B_{2n-1}$. En faisant une deuxième intégration par parties, on a donc

$$\int_0^1 B'_{2n}(t) f^{(2n-1)}(t) dt = \int_0^1 \underbrace{B_{2n-1}(t)} f^{(2n-1)}(t) dt$$
$$= \left[B_{2n-1}(t) f^{(2n-2)}(t) \right]_0^1 - \int_0^1 B_{2n-2}(t) f^{(2n-2)}(t) dt$$

Le crochet est nul car les nombres $B_{2n-1}(1)$ et $B_{2n-1}(0)$ sont nuls d'après la question (12). Pour ce qui est de l'intégrale, on reconnaît J_{n-1} . Au final, en réinjectant tout dans la formule de départ (attention aux signes!), on obtient

$$J_n = b_{2n} \left(f^{(2n-1)}(1) - f^{(2n-1)}(0) \right) + J_{n-1},$$

ce qui est le résultat souhaité.

(14) Calculons J_1 . Par définition,

$$J_1 = \int_0^1 B_2(t) f''(t) \, \mathrm{d}t.$$

On procède à une double intégration par parties comme dans la question précédente :

$$J_{1} = \int_{0}^{1} \underbrace{B_{2}(t)} \widehat{f''(t)} dt = \left[B_{2}(t)f'(t)\right]_{0}^{1} - \int_{0}^{1} \underbrace{B_{1}(t)} \widehat{f'(t)} dt$$

$$= b_{2} \left(f'(1) - f'(0)\right) - \left[B_{1}(t)f(t)\right]_{0}^{1} + \int_{0}^{1} B_{0}(t)f(t) dt$$

$$= b_{2} \left(f'(1) - f'(0)\right) - B_{1}(1)f(1) + B_{1}(0)f(0) + \int_{0}^{1} B_{0}(t)f(t) dt.$$

On se rappelle maintenant que B_0 est le polynôme constant égal à 1. Par ailleurs, d'après la question (7), $B_1 = X - \frac{1}{2}$ donc $B_1(0) = -\frac{1}{2}$ et $B_1(1) = \frac{1}{2}$. La formule ci-dessus devient donc

$$J_1 = b_2 (f'(1) - f'(0)) - \frac{f(1) + f(0)}{2} + \int_0^1 f(t) dt,$$

ce qui est bien équivalent à la formule recherchée.

(15) On procède par récurrence sur $n \in \mathbf{N}^*$. L'initialisation a été effectuée à la question (14).

Soit $n \in \mathbf{N}^{\star}$. Par hypothèse de récurrence,

$$\int_0^1 f(t) dt = \frac{f(1) + f(0)}{2} - \sum_{k=1}^n b_{2k} (f^{(2k-1)}(1) - f^{(2k-1)}(0)) + J_n.$$

Mais d'après la question (13),

$$J_n = J_{n+1} - b_{2n+2} \left(f^{(2n+1)}(1) - f^{(2n+1)}(0) \right)$$

En substituant dans la formule ci-dessus, on obtient exactement la formule souhaitée au rang n+1, ce qui achève la démonstration par récurrence.

(16) Comme suggéré dans l'énoncé, on s'intéresse à la fonction f définie sur [0;1] par f(x) = g((1-x)a+bx). Cette fonction est de classe \mathcal{C}^{2n} , par composition, on peut donc lui appliquer la formule établie à la question (15). On remarque, par applications successives de la formule de dérivation des fonctions composées, que pour tout $k \in [0;2n]$, $f^k(x) = (b-a)^k g^{(k)}((1-x)a+bx)$. En substituant cette formule chaque fois qu'une dérivée de f apparaît, on obtient la forme demandée pour la formule d'Euler-Maclaurin.