EXERCICE I. SUITE D'INTÉGRALES ET FONCTION GÉNÉRATRICE

Partie A. Étude de la suite $(u_n)_{n\in\mathbb{N}}$.

(1)
$$u_0 = \int_{-\pi/2}^{\pi/2} dt = \pi;$$
 $u_1 = \int_{-\pi/2}^{\pi/2} \cos t \, dt = \left[\sin t \right]_{-\pi/2}^{\pi/2} = 2;$
$$u_2 = \int_{-\pi/2}^{\pi/2} \cos^2 t \, dt = \int_{-\pi/2}^{\pi/2} \frac{1 + \cos(2t)}{2} \, dt = \left[\frac{t}{2} + \frac{\sin(2t)}{4} \right]_{-\pi/2}^{\pi/2} = \frac{\pi}{2}$$

- (2) Soit $n \in \mathbb{N}$. Pour tout $t \in [-\frac{\pi}{2}; \frac{\pi}{2}]$, $0 \le \cos t \le 1$, donc $0 \le \cos^n t \le 1$, puis $0 \le \cos^{n+1} t \le \cos^n t$. Comme $-\frac{\pi}{2} \le \frac{\pi}{2}$, on en déduit, par croissance de l'intégrale, que $0 \le u_{n+1} \le u_n$. Ceci étant vrai pour tout $n \in \mathbb{N}$, on en déduit que la suite $(u_n)_{n \in \mathbb{N}}$ est décroissante et positive.
- (3) Soit $n \in \mathbb{N}^*$. La fonction $t \mapsto \cos^n t$ est de classe \mathcal{C}^1 et la fonction $t \mapsto \cos t$ continue sur $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$, donc par intégration par parties,

$$u_{n+1} = \int_{-\pi/2}^{\pi/2} \underbrace{\cos t} \underbrace{\cos^n t} \, dt = \underbrace{\left[\sin t \cos^n t\right]_{-\pi/2}^{\pi/2}}_{=0 \text{ car } n > 1} + n \int_{-\pi/2}^{\pi/2} \underbrace{\sin^2 t}_{=1 - \cos^2 t} \cos^{n-1} t \, dt = nu_{n-1} - nu_{n+1},$$

donc $(n+1)u_{n+1} = nu_{n-1}$.

- (4) Pour tout $n \in \mathbb{N}$, $v_{n+1} = (n+2)u_{n+2}u_{n+1}$, mais d'après la question précédente, $(n+2)u_{n+2} = (n+1)u_n$ donc $v_{n+1} = (n+1)u_nu_{n+1} = v_n$. La suite $(v_n)_{n \in \mathbb{N}}$ est donc constante, égale à $v_0 = 1u_1u_0 = 2\pi$.
- (5) Pour tout $n \in \mathbb{N}$, $v_n = (n+1)u_{n+1}u_n = 2\pi$. Mais, la suite $(u_n)_{n \in \mathbb{N}}$ étant décroissante et les nombres (n+1), u_n et u_{n+1} positifs, on a

$$(n+1)u_{n+1}u_{n+1} < (n+1)u_nu_{n+1} < (n+1)u_nu_n$$

autrement dit $(n+1)u_{n+1}^2 \le 2\pi \le (n+1)u_n^2$.

(6) Soit $n \ge 1$. On reprend l'inégalité de droite de la question précédente : $2\pi \le (n+1)u_n^2$ donc $u_n \ge \sqrt{\frac{2\pi}{n+1}}$.

On reprend maintenant l'inégalité de gauche, mais appliquée à n-1 (ce qui est licite car n-1 est bien positif ou nul) : $nu_n^2 \le 2\pi$, donc $u_n \le \sqrt{\frac{2\pi}{n}}$. On a donc

$$\sqrt{\frac{2\pi}{n+1}} \le u_n \le \sqrt{\frac{2\pi}{n}}.$$

(7) On calcule la limite du rapport $u_n \sqrt{\frac{n}{2\pi}}$. D'après l'encadrement de la question précédente, pour tout $n \ge 1$,

$$\sqrt{\frac{n}{n+1}} \le u_n \sqrt{\frac{n}{2\pi}} \le 1.$$

Le membre de gauche et le membre de droite convergent vers 1 lorsque n tend vers l'infini. Par théorème d'encadrement, on en déduit que $u_n\sqrt{\frac{n}{2\pi}}$ converge également vers 1. Autrement dit, $u_n \sim \sqrt{\frac{2\pi}{n}}$.

Partie B. Série entière.

(8) D'après la question précédente, $u_n \sim \sqrt{\frac{2\pi}{n}}$, or $\sum \sqrt{\frac{2\pi}{n}}$ est divergente car c'est une série de Riemann d'exposant $\frac{1}{2} \leq 1$. D'après le théorème de comparaison des séries à termes positifs, on en déduit que $\sum u_n$ diverge.

(9) Remarquons que le fait que $\sum u_n = \sum u_n 1^n$ diverge prouve que $R \leq 1$.

L'équivalent de la suite $(u_n)_{n \in \mathbb{N}}$ obtenu à la question (7) prouve que la suite ne s'annule pas à partir d'un certain rang. On peut donc appliquer le critère de d'Alembert : pour tout $x \neq 0$,

$$\left|\frac{u_{n+1}x^{n+1}}{u_nx^n}\right| = |x|\frac{u_{n+1}}{u_n} \underset{n \to +\infty}{\sim} |x|\sqrt{\frac{2\pi n}{2\pi(n+1)}} \underset{n \to +\infty}{\longrightarrow} |x|.$$

D'après le critère de d'Alembert, la série $\sum u_n x^n$ est grossièrement divergente si |x| > 1 et absolument convergente si |x| < 1: on en déduit que R = 1.

(10) Soient $n \in \mathbb{N}^*$ et $x \in]-1;1[$. Alors

$$\sum_{k=0}^{n-1} u_k x^k = \sum_{k=0}^{n-1} x^k \int_{-\pi/2}^{\pi/2} \cos^k t \, dt = \int_{-\pi/2}^{\pi/2} \left(\sum_{k=0}^{n-1} (x \cos t)^k \right) dt,$$

par linéarité de l'intégrale. On reconnaît la somme des termes d'une suite géométrique de raison $x \cos t$ différente de 1 (car |x| < 1 et $|\cos t| \le 1$), on a donc

$$\sum_{k=0}^{n-1} (x\cos t)^k = \frac{1 - x^n \cos^n t}{1 - x \cos t},$$

donc

$$\sum_{k=0}^{n-1} u_k x^k = \int_{-\pi/2}^{\pi/2} \frac{1 - x^n \cos^n t}{1 - x \cos t} \, \mathrm{d}t = \int_{-\pi/2}^{\pi/2} \frac{\mathrm{d}t}{1 - x \cos t} - x^n \int_{-\pi/2}^{\pi/2} \frac{\cos^n t}{1 - x \cos t} \, \mathrm{d}t.$$

(11) On reprend l'égalité établie à la question précédente et on fait tendre n vers l'infini. Le terme de gauche converge vers $\sum_{k=0}^{+\infty} u_k x^k$ car |x| < 1 et la série entière est de rayon 1.

Pour le terme de droite, on voit que $x^n \longrightarrow 0$. Il reste à voir que la suite des intégrales $\int_{-\pi/2}^{\pi/2} \frac{\cos^n t}{1-x\cos t} \, \mathrm{d}t$ est bornée. On sait que, pour tout $t \in [-\frac{\pi}{2}; \frac{\pi}{2}], |\cos^n t| \le 1$. Par ailleurs, $|1-x\cos t| \ge |1| - |x\cos t| \ge 1 - |x| > 0$, donc

$$\left| \int_{-\pi/2}^{\pi/2} \frac{\cos^n t}{1 - x \cos t} \, \mathrm{d}t \right| \le \int_{-\pi/2}^{\pi/2} \left| \frac{\cos^n t}{1 - x \cos t} \right| \, \mathrm{d}t \le \int_{-\pi/2}^{\pi/2} \frac{\mathrm{d}t}{1 - |x|} = \frac{\pi}{1 - |x|}.$$

On en déduit que la quantité $x^n \int_{-\pi/2}^{\pi/2} \frac{\cos^n t}{1-x\cos t} dt$ converge vers 0 lorsque n tend vers l'infini, ce qui établit bien la formule demandée, par unicité de la limite.

(12) D'après la question précédente, pour tout $x \in]-1;1[$.

$$S(x) = \int_{-\pi/2}^{\pi/2} \frac{\mathrm{d}t}{1 - x \cos t}.$$

On effectue le changement de variables $u=\tan\frac{t}{2}$ suggéré dans l'énoncé, licite car u est de classe \mathcal{C}^1 sur $\left[-\frac{\pi}{2};\frac{\pi}{2}\right]$. On a $\mathrm{d}u=\frac{1}{2}(1+u^2)\mathrm{d}t$ donc $\mathrm{d}t=2\frac{\mathrm{d}u}{1+u^2}$. Par ailleurs, on sait que $\cos t=\frac{1-u^2}{1+u^2}$. Enfin, $u(\pm\frac{\pi}{2})=\tan(\pm\frac{\pi}{4})=\pm 1$. Par théorème de changement de variables, on a donc

$$S(x) = \int_{-\pi/2}^{\pi/2} \frac{\mathrm{d}t}{1 - x \cos t} = \int_{-1}^{1} \frac{2 \frac{\mathrm{d}u}{1 + u^2}}{1 - x \frac{1 - u^2}{1 + u^2}} = \int_{-1}^{1} \frac{2 \mathrm{d}u}{1 + u^2 - x(1 - u^2)} = \int_{-1}^{1} \frac{2}{(1 - x) + (1 + x)u^2} \mathrm{d}u.$$

(13) Soit $x \in]-1;1[$. Il s'agit de calculer l'intégrale établie à la question précédente. On va utiliser un changement de variables pour se ramener à une intégrale de la forme $\int \frac{dt}{1+t^2}$. Pour cela, on écrit

$$S(x) = \int_{-1}^1 \frac{2 \mathrm{d} u}{(1-x) + (1+x)u^2} = \frac{2}{1-x} \int_{-1}^1 \frac{\mathrm{d} u}{1 + \frac{1+x}{1-x}u^2} = \frac{2}{1-x} \int_{-1}^1 \frac{\mathrm{d} u}{1 + (au)^2},$$

avec $a = \sqrt{\frac{1+x}{1-x}}$. On pose alors t = au (dt = adu) et, par changement de variables,

$$S(x) = \frac{2}{a(1-x)} \int_{-a}^{a} \frac{dt}{1+t^2} = \frac{2}{a(1-x)} \left[\arctan t \right]_{-a}^{a}.$$

Remarquons que, la fonction arctangente étant impaire, le crochet peut se réécrire $2\arctan(a)$. Par ailleurs, $a(1-x)=\sqrt{\frac{1+x}{1-x}}(1-x)=\sqrt{(1+x)(1-x)}=\sqrt{1-x^2}$ Au final, on obtient donc

$$S(x) = \frac{4}{\sqrt{1-x^2}} \arctan \sqrt{\frac{1+x}{1-x}}.$$

EXERCICE II. ÉTUDE D'UNE COURBE

Partie A. Deux fonctions.

- (1) Les fonctions f et g sont bien définies tant que leur dénominateur ne s'annule pas, autrement dit sur $\mathbb{R} \setminus \{\pm 1\}$.
- (2) $f(\sqrt{3}) = \frac{3}{1-3} = -\frac{3}{2}$ et $g(\sqrt{3}) = \frac{3\sqrt{3}}{1-3} = -\frac{3}{2}\sqrt{3}$.
- (3) On remarque que les domaines de définition de f et g sont symétriques par rapport à l'origine. De plus, pour tout $t \neq \pm 1$,

$$\begin{cases} f(-t) = \frac{(-t)^2}{1 - (-t)^2} = \frac{t^2}{1 - t^2} = f(t) \\ g(-t) = \frac{(-t)^3}{1 - (-t)^2} = \frac{-t^3}{1 - t^2} = -g(t). \end{cases}$$

On en déduit que la fonction f est paire et la fonction g impaire. Le point M(-t) est donc de même abscisse, mais d'ordonnée opposée, au point M(t); il s'agit donc de son symétrique par rapport à l'axe (Ox).

- (4) Pour t tendant vers $+\infty$, $f(t) \sim \frac{t^2}{-t^2} = -1$ et $g(t) \sim \frac{t^3}{-t^2} = -t$. On en déduit que f tend vers -1 et g vers $-\infty$
- (5) Pour t tendant vers 1, le dénominateur $1 t^2$ tend vers 0^+ si t < 1 et 0^- si t > 1, tandis que les deux numérateurs t^2 et t^3 tendent vers 1; on en déduit les quatre limites :

$$\lim_{t \to 1^{-}} f(t) = +\infty; \quad \lim_{t \to 1^{+}} f(t) = -\infty; \quad \lim_{t \to 1^{-}} g(t) = +\infty; \quad \lim_{t \to 1^{+}} g(t) = -\infty.$$

(6) Par composition, les fonctions f et g sont dérivables sur [0;1[et sur $]1;+\infty[$. Pour tout $t\neq 1,$ on a

$$\begin{cases} f'(t) = \frac{2t(1-t^2)-t^2(-2t)}{(1-t^2)^2} = \frac{2t}{(1-t^2)^2} \\ g'(t) = \frac{3t^2(1-t^2)-t^3(-2t)}{(1-t^2)^2} = \frac{3t^2-t^4}{(1-t^2)^2} = \frac{t^2(3-t^2)}{(1-t^2)^2} \end{cases}$$

(7) Pour dresser les tableaux de variations, il s'agit d'étudier le signe des dérivées f' et g'. On voit que f' est positive sur $[0;1[\cup]1;+\infty[$ et s'annule en t=0; de son côté, g' est positive sur $[0;1[\cup]1;\sqrt{3}]$, puis négative sur $[\sqrt{3};+\infty[$, avec annulation en 0 et en $\sqrt{3}$. On en déduit le tableau :

t	0		1		$\sqrt{3}$		$+\infty$
f'(t)	0	+		+		+	
g'(t)	0	+		+	0	_	
f(t)		$0 \nearrow +\infty$		-∞ ∕	-3/2	> −1	
g(t)		0 ≯ +∞		-∞ ∕	$-3\sqrt{3}/2$	∑ -∞	

Partie B. Tangente à l'origine et au point $M(\sqrt{3})$.

- (8) $\frac{1}{1-u} = 1 + u + o(u)$.
- (9) Si $t \to 0$, alors $t^2 \to 0$ donc on peut écrire, d'après la formule précédente, $\frac{1}{1-t^2} = 1 + t^2 + o(t^2)$. En multipliant par les numérateurs respectifs, on obtient

$$\begin{cases} f(t) = t^2(1 + t^2 + o(t^2)) = t^2 + o(t^3) \\ g(t) = t^3(1 + t^2 + o(t^2)) = t^3 + o(t^3) \end{cases}$$

(10) D'après la formule de Taylor-Young à l'ordre 3 (car les fonctions f et g sont de classe C^3 au voisinage de 0, par composition) on peut écrire

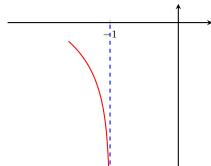
$$\begin{cases} f(t) = f(0) + tf'(0) + \frac{t^2}{2}f''(0) + \frac{t^3}{6}f'''(0) + o(t^3) \\ g(t) = g(0) + tg'(0) + \frac{t^2}{2}g''(0) + \frac{t^3}{6}g'''(0) + o(t^3) \end{cases}$$

Par unicité du développement limité, on peut identifier ces formules avec celles de la question précédente. En particulier, en identifiant les termes de degré $2:\frac{t^2}{2}f''(0)=t^2$ donc f''(0)=2 et $\frac{t^2}{2}g''(0)=0$ donc g''(0)=0.

- (11) On a M(0) = (0,0) donc un vecteur tangent à la courbe en l'origine du repère est donné par le premier vecteur dérivé non nul de (f,g) en t=0. D'après les questions précédentes, il s'agit du vecteur dérivé d'ordre 2 et il vaut $\binom{2}{0}$. Un vecteur tangent à $\mathcal C$ en l'origine est donc $\binom{1}{0}$.
- (12) On a $g'(\sqrt{3}) = 0$ mais $f'(\sqrt{3}) \neq 0$, donc la courbe admet en $M(\sqrt{3})$ une tangente horizontale. Un vecteur tangent est donc $\binom{1}{0}$.

Partie C. Asymptotes.

(13) On en déduit que la courbe \mathcal{C} admet une asymptote verticale d'équation x=-1 au voisinage de $t=+\infty$.



On note que f(t) < 1 et $g(t) \to -\infty$ donc la courbe reste à gauche de l'asymptote et se dirige vers le bas.

- (14) Par définition, N(t) est le point de \mathcal{D} d'abscisse f(t). Une équation cartésienne de \mathcal{D} étant $y = x \frac{1}{2}$, on a donc $y_{N(t)} = f(t) \frac{1}{2}$.
- (15) On remarque que t=1 est racine : on peut donc écrire $P(t)=-2t^2+t+1=-2(t-1)(t+\frac{1}{2})$.
- (16) Pour tout $t \neq 1$,

$$\delta(t) = \frac{t^3 - t^2}{1 - t^2} + \frac{1}{2} = \frac{t^2(t - 1)}{(1 - t)(1 + t)} + \frac{1}{2} = \frac{-t^2}{1 + t} + \frac{1}{2}.$$

En réduisant au même dénominateur, on obtient

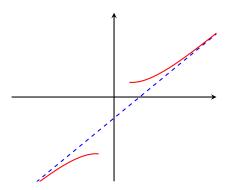
$$\delta(t) = \frac{-2t^2 + (1+t)}{2(1+t)} = \frac{P(t)}{2(1+t)}.$$

(17) Pour tout t au voisinage de 1, le dénominateur 1 + t est positif. Pour ce qui est du signe du numérateur P(t), on utilise la factorisation de la question (14):

t		1	
-2	_		_
$t + \frac{1}{2}$	+		+
(t - 1)	_	0	+
$\overline{P(t)}$	+	0	_

On en déduit qu'au voisinage de 1, $\delta(t)$ est positif si t < 1 et négatif si t > 1.

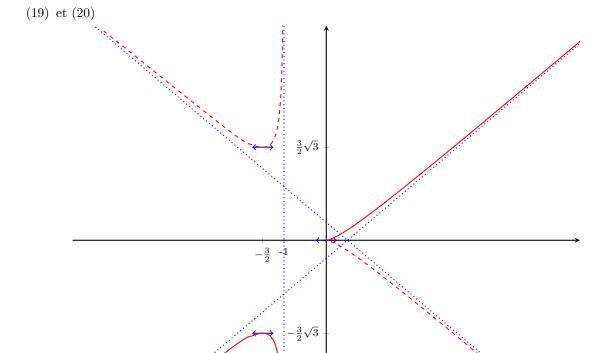
(18) D'après la question (14), $g(t) - y_{N(t)} = \delta(t) = \frac{P(t)}{2(1+t)}$. Lorsque $t \to 1$, $1+t \to 2$ et $P(t) \to 0$ donc $\delta(t) \to 0$. On en déduit que la droite \mathcal{D} est une asymptote oblique de la courbe \mathcal{C} au voisinage de t = 1.



Pour $t \to 1^-$, f(t) et g(t) tendent vers $+\infty$ donc la courbe se dirige vers le haut à droite; on a $\delta(t) > 0$ donc la courbe est au-dessus de son asymptote.

Pour $t \to 1^+$, f(t) et g(t) tendent vers $-\infty$ donc la courbe se dirige vers le bas à gauche; on a $\delta(t) < 0$ donc la courbe est en-dessous de son asymptote.

Partie D. Tracé de la courbe.



(1) $\Gamma(1)=\int_0^{+\infty}e^{-t}\,\mathrm{d}t$. La fonction $t\mapsto e^{-t}$ est continue sur \mathbf{R}_+ , on a une impropreté en $+\infty$. Pour tout A>0,

$$\int_0^A e^{-t} dt = \left[-e^{-t} \right]_0^A = 1 - e^{-A} \underset{A \to +\infty}{\longrightarrow} 1,$$

donc l'intégrale $\Gamma(1)$ converge et vaut 1.

- (2) $\Gamma(0) = \int_0^{+\infty} \frac{e^{-t}}{t} dt$. La fonction $t \mapsto \frac{e^{-t}}{t}$ est continue et positive sur \mathbf{R}_+^{\star} , il y a impropretés en 0 et $+\infty$. Pour $t \to 0$, $\frac{e^{-t}}{t} \sim \frac{1}{t}$, mais on sait que $\int_0^1 \frac{dt}{t}$ diverge donc $\int_0^1 \frac{e^{-t}}{t} dt$ diverge par théorème de comparaison. Ainsi, $\Gamma(0)$ est une intégrale divergente.
- (3) Soit x > 0. $\Gamma(x) = \int_0^{+\infty} t^{x-1} e^{-t} dt$. La fonction $t \mapsto t^{x-1} e^{-t}$ est continue et positive sur \mathbf{R}_+^* , il y a impropretés en 0 et en $+\infty$.

Pour $t \to 0$, $e^{-t} \to 1$ donc $t^{x-1}e^{-t}$, or $\int_0^1 t^{x-1} dt$ est convergente car x-1 > -1. Par théorème de comparaison, on en déduit que $\int_0^1 t^{x-1}e^{-t} dt$ est convergente.

Pour $t \to +\infty$, on peut écrire $t^{x-1}e^{-t} = \frac{t^{x+1}e^{-t}}{t^2}$, or $t^{x+1}e^{-t}$ tend vers 0 par croissance comparée, donc $t^{x-1}e^{-t} = o(\frac{1}{t^2})$. On sait que $\int_1^{+\infty} \frac{\mathrm{d}t}{t^2}$ est convergente (car 2 > 1), donc $\int_1^{+\infty} t^{x-1}e^{-t}$ est convergente par théorème de comparaison.

Ainsi, l'intégrale $\Gamma(x)$ est convergente.

(4) (a) La fonction $t \mapsto t^n$ est de classe \mathcal{C}^1 et la fonction $t \mapsto e^{-t}$ continue sur [0; A]. Par intégration par parties,

$$\int_0^A \underbrace{t^n e^{-t}} dt = \left[-t^n e^{-t} \right]_0^A - \int_0^A n t^{n-1} \left(-e^{-t} \right) dt = A^n e^{-A} + n \int_0^A t^{n-1} e^{-t} dt,$$

 $\operatorname{car} n > 0$ donc le facteur t^n s'annule pour t = 0.

- (b) On fait tendre A vers $+\infty$ dans l'égalité précédente. Le membre de gauche converge vers $\Gamma(n+1)$ car l'intégrale est convergente (d'après la question (3), car n+1>0). Le terme A^ne^{-A} tend vers 0 par croissance comparée, et l'intégrale de droite converge vers $\Gamma(n)$ car elle est également convergente (d'après la question (3), car n>0). Ainsi, par unicité de la limite, on a $\Gamma(n+1)=n\Gamma(n)$.
- (5) Montrons par récurrence que $\Gamma(n)=(n-1)!$ pour tout $n\in \mathbf{N}^{\star}$.

Pour n = 1, on a montré à la question (1) que $\Gamma(1) = 1 = 0!$.

Soit $n \in \mathbb{N}^*$. On suppose que $\Gamma(n) = (n-1)!$. Alors, d'après la question (4), $\Gamma(n+1) = n\Gamma(n) = n(n-1)! = n!$.

Ainsi, par principe de récurrence, on a $\Gamma(n)=(n-1)!$ pour tout $n\in \mathbf{N}^*$.