Exercice I

- (1) À l'instant initial, les deux ampoules sont allumées, autrement dit $X_0 = 2$ avec probabilité 1 (loi certaine). On a donc $\mathbf{E}(X_0) = 2$ et $\mathbf{V}(X_0) = 0$.
- (2) Si $X_n = 2$, cela signifie que les deux ampoules sont allumées à l'instant n. Pour avoir $X_{n+1} = 2$, il faut qu'elles restent allumées. Chacune reste allumée avec probabilité $\frac{1}{2}$, et les deux ampoules sont indépendantes, donc la probabilité qu'elles restent allumées est $\mathbf{P}_{X_n=2}(X_{n+1}=2) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$.

Au contraire, pour avoir $X_{n+1}=1$, il faut qu'exactement une ampoule grille, c'est-à-dire qu'une grille tandis que l'autre reste allumée. Comme les ampoules sont indépendantes, la probabilité que la première grille tandis que la deuxième reste allumée est $\frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$; de même pour la probabilité que la deuxième grille tandis que la première reste allumée. Au final, $\mathbf{P}_{X_n=2}(X_{n+1}=1)=\frac{1}{4}+\frac{1}{4}=\frac{1}{2}$.

- (3) On a $\mathbf{P}_{(X_n=2)}(X_{n+1}=0) = \frac{1}{4}$, $\mathbf{P}_{(X_n=1)}(X_{n+1}=2) = 0$, $\mathbf{P}_{(X_n=1)}(X_{n+1}=1) = \frac{1}{2}$, $\mathbf{P}_{(X_n=1)}(X_{n+1}=0) = \frac{1}{2}$, $\mathbf{P}_{(X_n=0)}(X_{n+1}=2) = 0$, $\mathbf{P}_{(X_n=0)}(X_{n+1}=1) = 0$ et $\mathbf{P}_{(X_n=0)}(X_{n+1}=0) = 1$.
- (4) Les événements $X_n = 0$, $X_n = 1$ et $X_n = 2$ forment un système complet d'événements. D'après la formule des probabilités totales, on a donc

$$\mathbf{P}(X_{n+1} = 1) = \mathbf{P}_{(X_n = 0)}(X_{n+1} = 1)\mathbf{P}(X_n = 0) + \mathbf{P}_{(X_n = 1)}(X_{n+1} = 1)\mathbf{P}(X_n = 1) + \mathbf{P}_{(X_n = 2)}(X_{n+1} = 1)\mathbf{P}(X_n = 2)$$
$$= \frac{1}{2}\mathbf{P}(X_n = 1) + \frac{1}{2}\mathbf{P}(X_n = 2).$$

De même, $\mathbf{P}(X_{n+1}=2)=\frac{1}{4}\mathbf{P}(X_n=2)$ et $\mathbf{P}(X_{n+1}=0)=\mathbf{P}(X_n=0)+\frac{1}{2}\mathbf{P}(X_n=1)+\frac{1}{4}\mathbf{P}(X_n=2)$, autrement dit

$$\begin{pmatrix} \mathbf{P}(X_{n+1} = 0) \\ \mathbf{P}(X_{n+1} = 1) \\ \mathbf{P}(X_{n+1} = 2) \end{pmatrix} = \begin{pmatrix} 1 & 1/2 & 1/4 \\ 0 & 1/2 & 1/2 \\ 0 & 0 & 1/4 \end{pmatrix} \begin{pmatrix} \mathbf{P}(X_n = 0) \\ \mathbf{P}(X_n = 1) \\ \mathbf{P}(X_n = 2) \end{pmatrix}.$$

(5) (a) Par définition, $\mathbf{E}(X_n) = 0 \cdot \mathbf{P}(X_n = 0) + 1 \cdot \mathbf{P}(X_n = 1) + 2 \cdot \mathbf{P}(X_n = 2) = \begin{pmatrix} 0 & 1 & 2 \end{pmatrix} \cdot U_n$. (b)

$$L_1 A = \begin{pmatrix} 0 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 1/2 & 1/4 \\ 0 & 1/2 & 1/2 \\ 0 & 0 & 1/4 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} & 1 \end{pmatrix} = \frac{1}{2} L_1.$$

On a donc, pour tout $n \in \mathbf{N}$,

$$\mathbf{E}(X_{n+1}) = L_1 U_{n+1} = L_1 A U_n = \frac{1}{2} L_1 U_n = \frac{1}{2} \mathbf{E}(X_n).$$

- (c) Par récurrence immédiate, pour tout $n \in \mathbb{N}$, $\mathbf{E}(X_n) = \frac{1}{2^n}\mathbf{E}(X_0) = \frac{1}{2^{n-1}}$.
- (6) (a) D'après la formule de transfert, $\mathbf{E}(X_n^2) = 0^2 \cdot \mathbf{P}(X_n = 0) + 1^2 \cdot \mathbf{P}(X_n = 1) + 2^2 \mathbf{P}(X_n = 2) = L_2 U_n$.

(b)

$$L_2 A = \begin{pmatrix} 0 & 1 & 4 \end{pmatrix} \begin{pmatrix} 1 & 1/2 & 1/4 \\ 0 & 1/2 & 1/2 \\ 0 & 0 & 1/4 \end{pmatrix} = \begin{pmatrix} 0 & \frac{1}{2} & \frac{3}{2} \end{pmatrix}.$$

On a donc, pour tous $\alpha, \beta \in \mathbf{R}$,

$$L_2 A = \alpha L_1 + \beta L_2 \iff \begin{cases} 0 = 0 \cdot \alpha + 0 \cdot \beta \\ \frac{1}{2} = \alpha + \beta \\ \frac{3}{2} = 2\alpha + 4\beta \end{cases} \iff \alpha = \beta = \frac{1}{4}.$$

Ainsi, $L_2A = \frac{1}{4}L_1 + \frac{1}{4}L_2$.

(c) Pour tout $n \in \mathbb{N}$, on a donc

$$\mathbf{E}(X_{n+1})^2 = L_2 U_{n+1} = L_2 A U_n = \frac{1}{4} L_1 U_n + \frac{1}{4} L_2 U_n = \frac{1}{4} \mathbf{E}(X_n) + \frac{1}{4} \mathbf{E}(X_n^2),$$

or d'après la question (5) $\mathbf{E}(X_n) = \frac{1}{2^{n-1}}$ donc $\frac{1}{4}\mathbf{E}(X_n) = \frac{1}{4\cdot 2^{n-1}} = \frac{1}{2^{n+1}}$, ce qui montre le résultat souhaité.

(d) Pour tout $n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2^n}$. Par ailleurs,

$$\frac{1}{4}u_n + \frac{1}{2^{n+1}} = \frac{1}{4}\frac{1}{2^{n-1}} + \frac{1}{2^{n+1}} = \frac{2}{2^{n+1}} = \frac{1}{2^n}.$$

On a donc bien $u_{n+1} = \frac{1}{4}u_n + \frac{1}{2^{n+1}}$.

(e) Soit $n \in \mathbb{N}$. Alors, d'après les questions précédentes,

$$v_{n+1} = \mathbf{E}(X_{n+1}^2) - u_{n+1} = \frac{1}{4}\mathbf{E}(X_n^2) + \frac{1}{2^{n+1}} - \left(\frac{1}{4}u_n + \frac{1}{2^{n+1}}\right)$$
$$= \frac{1}{4}\mathbf{E}(X_n^2) - \frac{1}{4}u_n = \frac{1}{4}v_n.$$

La suite $(v_n)_{n \in \mathbb{N}}$ est donc géométrique de raison $\frac{1}{4}$.

- (f) On a donc, pour tout $n \in \mathbb{N}$, $v_n = \frac{1}{4^n}v_0 = \frac{1}{4^n}(\mathbf{E}(X_0^2) \frac{1}{2^{-1}}) = \frac{1}{2^{2n}}(4-2) = \frac{1}{2^{2n-1}}$. On en déduit que $\mathbf{E}(X_n^2) = v_n + u_n = \frac{1}{2^{2n-1}} + \frac{1}{2^{n-1}} = \frac{1+2^n}{2^{2n-1}}$
- (7) D'après la formule de König-Huygens, pour tout $n \in \mathbb{N}$,

$$\mathbf{V}(X) = \mathbf{E}(X^2) - \mathbf{E}(X)^2 = \frac{1+2^n}{2^{2n-1}} - \frac{1}{2^{2n-2}} = \frac{2^n - 1}{2^{2n-1}}.$$

EXERCICE II

- (1) Pour la bilinéarité, la symétrie et la positivité, voir les milliers d'exemples faits en cours et en TD. Pour le caractère défini, utiliser le théorème « aux quatre hypothèses » pour dire que P(t) = 0 pour tout $t \in [0;1]$; le polynôme P admet ainsi une infinité de racines, donc il est nul.
- (2) (a) On va montrer cette équivalence par double implication :

 $(i) \implies (ii)$ Si, pour tout $P \in \mathbf{R}_1[X]$, on a $\langle P, P_0 \rangle = P(0)$, alors en particulier pour P = 1: $\langle 1, P_0 \rangle = 1(0) = 1$, et pour $P = X : \langle X, P_0 \rangle = X(0) = 0$.

 $(ii) \Longrightarrow (i)$ On suppose (ii). Soit donc $P \in \mathbf{R}_1[X]$: il existe $a, b \in \mathbf{R}$ tels que P = aX + b. Alors, par bilinéarité, $\langle P, P_0 \rangle = a \langle X, P_0 \rangle + b \langle 1, P_0 \rangle = a \times 0 + b \times 1 = b$. Mais par ailleurs $P(0) = a \times 0 + b = b$. On a donc bien $\langle P, P_0 \rangle = P(0)$.

(b) Par définition,

$$\langle 1, P_0 \rangle = \langle 1, a_0 X + b_0 \rangle = \int_0^1 1 \times (a_0 t + b_0) dt = \frac{a_0}{2} + b_0;$$

 $\langle X, P_0 \rangle = \langle X, a_0 X + b_0 \rangle = \int_0^1 t \times (a_0 t + b_0) dt = \frac{a_0}{3} + \frac{b_0}{2}.$

- (c) D'après la question (a), on a $(i) \iff (ii)$, mais d'après la question (b), $(ii) \iff (ii')$, on a donc bien $(i) \iff (ii')$.
- (d) On résout le système (ii'):

$$\begin{cases} \frac{1}{2}a_0 + b_0 = 1\\ \frac{1}{3}a_0 + \frac{1}{2}b_0 = 0 \end{cases} \iff \begin{cases} a_0 = -6\\ b_0 = 4 \end{cases}$$

D'après les questions précédentes, l'unique polynôme $P_0 \in \mathbf{R}_1[X]$ vérifiant la propriété (i) est donc $P_0 = -6X + 4$.

- (3) (a) $||P_1||^2 = \langle P_1, P_1 \rangle = \int_0^1 1^2 dt = 1$; on a donc bien $||P_1|| = 1$.
 - (b) On applique le procédé de Gram-Schmidt à la base canonique $(P_1=1,X)$ de $\mathbf{R}_1[X]$. Comme $\|P_1\|=1$, il suffit de transformer le polynôme X. On cherche $\lambda \in \mathbf{R}$ tel que $\langle X-\lambda, P_1 \rangle = 0$; il suffit de prendre $\lambda = \langle X, P_1 \rangle = \int_0^1 t \, \mathrm{d}t = \frac{1}{2}$. On calcule alors $\|X-\frac{1}{2}\|^2 = \int_0^1 (t-\frac{1}{2})^2 \, \mathrm{d}t = \frac{1}{12}$. On prend donc $P_2 = \sqrt{12}(X-\frac{1}{2}) = \sqrt{3}(2X-1)$.
 - (c) On va montrer l'égalité entre l'ensemble S et l'ensemble des polynômes de la forme $\cos \theta P_1 + \sin \theta 2$, par double inclusion.

- Soit $\theta \in \mathbf{R}$, on pose $P = \cos \theta P_1 + \sin \theta P_2$. Alors, comme (P_1, P_2) est une base orthonormée, $||P||^2 = \cos^2 \theta + \sin^2 \theta = 1$ donc $P \in S$.
- Soit maintenant $P \in S$. On décompose P dans la base (P_1, P_2) : il existe donc $\lambda, \mu \in \mathbf{R}$ tels que $S = \lambda P_1 + \mu P_2$. Comme (P_1, P_2) est orthonormée, on a $||P||^2 = \lambda^2 + \mu^2$, et comme $P \in S$, $\lambda^2 + \mu^2 = 1$. En particulier, $\lambda^2 \leq 1$ donc $\lambda \in [-1; 1]$: on peut poser $\theta = \arccos \lambda \in [0; \pi]$.

Alors, si $\mu \geq 0$, $\mu = \sqrt{1 - \lambda^2} = \sqrt{1 - \cos^2 \theta} = \sin \theta$. On a donc bien écrit $P = \cos \theta P_1 + \sin \theta P_2$ pour un certain $\theta \in \mathbf{R}$.

Si $\mu < 0$, alors $\mu = -\sqrt{1 - \lambda^2} = -\sin \theta$. On peut alors écrire $\lambda = \cos(-\theta)$ et $\mu = -\sin \theta = \sin(-\theta)$. On a donc écrit $P = \cos \theta' P_1 + \sin \theta' P_2$, avec $\theta' = -\theta \in \mathbf{R}$.

Les deux ensembles sont donc bien égaux.

- (d) Soit $\theta \in \mathbf{R}$. On considère $P = \cos \theta P_1 + \sin \theta P_2$. Alors $P(0) = \cos \theta P_1(0) + \sin \theta P_2(0) = \cos \theta \sqrt{3} \sin \theta = 2 \left(\frac{1}{2} \cos \theta \frac{\sqrt{3}}{2} \sin \theta\right) = 2 \left(\cos \frac{\pi}{3} \cos \theta \sin \frac{\pi}{3} \sin \theta\right) = 2 \cos(\theta + \frac{\pi}{3})$. On a donc $\lambda = 2$ et $\theta_0 = -\frac{\pi}{3}$.
- (e) Il suffit donc de déterminer la valeur maximale de $\lambda \cos(\theta \theta_0)$ quand θ parcourt **R**. Le maximum de $\cos(\theta \theta_0)$ est 1, le maximum de P(0) est donc 2 (atteint pour $\theta = -\frac{\pi}{3}$, donc pour $P = \frac{1}{2}P_1 \frac{\sqrt{3}}{2}P_2 = -3X + 2$)
- (4) (a) Si u, v sont deux vecteurs d'un espace préhilbertien, alors $\langle u, v \rangle \leq ||u|| \cdot ||v||$, avec égalité si et seulement si u et v sont colinéaires, de coefficient de proportionnalité positif.
 - (b) D'après la question (2), pour tout $P \in S$, $P(0) = \langle P, P_0 \rangle$. D'après l'inégalité de Cauchy-Schwarz, on a donc $P(0) \leq ||P|| \cdot ||P_0||$. Mais comme $P \in S$, ||P|| = 1 et l'inégalité devient donc $P(0) \leq ||P_0||$.
 - (c) D'après le cas d'égalité de l'inégalité de Cauchy-Schwarz, $P(0) = ||P_0||$ si et seulement s'il existe $\lambda \in \mathbf{R}_+$ tel que $P = \lambda P_0$. Mais comme $P \in S$, on a nécessairement ||P|| = 1, donc $|\lambda| \cdot ||P_0|| = 1$ et, comme $\lambda \ge 0$, $\lambda = \frac{1}{||P_0||}$.

Calculons $||P_0||$. On a montré à la question (2) que $P_0 = -6X + 4$, donc

$$||P_0||^2 = \int_0^1 (-6t+4)^2 dt = \int_0^1 (36t^2 - 48t + 16) dt = \frac{36}{3} - \frac{48}{2} + 16 = 4,$$

si bien que $||P_0||=2$ et $\lambda=\frac{1}{2}.$ Le polynôme P recherché est donc $P=\frac{1}{2}P_0=-3X+2\in S.$

(d) D'après la question (b), pour tout $P \in S$, $P(0) \le ||P_0|| = 2$. On a montré à la question (c) que cette borne supérieure est atteinte par le polynôme P = -3X + 2. Il s'agit donc de la valeur maximale prise par P(0) lorsque P parcourt S.

EXERCICE III

(1) Le rayon de convergence d'une série entière $\sum a_n x^n$ est l'unique réel $R \geq 0$ tel que, pour tout $x \in \mathbf{R}$,

$$\begin{cases} \text{ si } |x| < R, \text{ alors } \sum a_n x^n \text{ converge absolument;} \\ \text{ si } |x| > R, \text{ alors } \sum a_n x^n \text{ diverge grossièrement.} \end{cases}$$

(2) Notons
$$D_R =]-R$$
; $R[. Si \sum c_k x^k \text{ est solution de } (E), \text{ alors}]$

$$\forall x \in D_R \quad x^2 \sum_{k=2}^{+\infty} k(k-1)c_k x^{k-2} + x \sum_{k=1}^{+\infty} kc_k x^{k-1} + x^2 \sum_{k=0}^{+\infty} c_k x^k = 0$$

$$\operatorname{donc} \ \forall x \in D_R \quad \sum_{k=2}^{+\infty} k(k-1)c_k x^k + \sum_{k=1}^{+\infty} kc_k x^k + \sum_{k=0}^{+\infty} c_k x^{k+2} = 0$$

$$\operatorname{càd} \ \forall x \in D_R \quad \sum_{k=2}^{+\infty} k(k-1)c_k x^k + c_1 x + \sum_{k=2}^{+\infty} kc_k x^k + \sum_{k=2}^{+\infty} c_{k-2} x^k = 0$$

$$\operatorname{donc} \ \forall x \in D_R \quad \sum_{k=2}^{+\infty} (k(k-1)c_k + kc_k + c_{k-2})x^k = -c_1 x$$

$$\operatorname{càd} \ \forall x \in D_R \quad \sum_{k=2}^{+\infty} (k^2 c_k + c_{k-2})x^k = -c_1 x.$$

Par unicité du développement en série entière de la fonction $-c_1x$, on en déduit donc

$$\left\{ \begin{array}{l} 0=-c_1 \\ \forall\, k\geq 2\; k^2c_k+c_{k-2}=0, \end{array} \right. \text{ autrement dit } \left\{ \begin{array}{l} c_1=0 \\ \forall\, k\geq 2\; c_k=-\frac{c_{k-2}}{k^2}. \end{array} \right.$$

On en déduit par récurrence immédiate que $c_1 = c_3 = c_5 = \cdots = 0$, tandis que

$$c_0 = 1$$
, $c_2 = -\frac{c_0}{2^2} = -\frac{1}{2^2}$; $c_4 = -\frac{c_2}{4^2} = \frac{1}{2^2 \cdot 4^2}$; $c_6 = -\frac{c_4}{6^2} = -\frac{1}{2^2 \cdot 4^2 \cdot 6^2}$; \cdots

et ainsi, pour tout $k \in \mathbf{N}$,

$$c_{2k} = \frac{(-1)^k}{2^2 \cdot 4^2 \cdots (2k)^2} = \frac{(-1)^k}{(2 \times 1)^2 (2 \times 2)^2 \cdots (2 \times k)^2} = \frac{(-1)^k}{2^{2k} (k!)^2} = \frac{(-1)^k}{4^k (k!)^2}$$

(3) D'après les questions précédentes, on peut écrire, pour tout $x \in]-R; R[$

$$J_0(x) = \sum_{k=0}^{+\infty} \frac{(-1)^k}{4^k (k!)^2} x^{2k}.$$

On va appliquer la règle de d'Alembert à cette série, dont les coefficients sont bien tous non nuls. Si $x \neq 0$, on a

$$\left| \frac{(-1)^{k+1} 4^k (k!)^2}{(-1)^k 4^{k+1} ((k+1)!)^2} \frac{x^{2k+2}}{x^{2k}} \right| = \frac{|x|^2}{4(k+1)^2} \underset{k \to +\infty}{\longrightarrow} 0;$$

on en déduit que la série est absolument convergente quelle que soit la valeur de x; autrement dit, $R = +\infty$.

- (4) La fonction J_0 n'est pas constamment nulle sur]-r;r[car $J_0(0)=C_0=1$. Ainsi la liaison de la famille (J_0,f) signifie qu'il existe $\lambda \in \mathbf{R}$ tel que $f=\lambda J_0$. La fonction J_0 étant la somme d'une série entière, elle est de classe \mathcal{C}^{∞} donc continue, et ainsi bornée sur tout segment. Ainsi, elle est bornée au voisinage de 0, et il en va de même de la fonction $f=\lambda J_0$.
- (5) Supposons que $\sum \beta_k x^k$ est solution. Alors, pour tout x appartenant au rayon de convergence des deux séries,

$$(\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \cdots)(\beta_0 + \beta_1 x + \beta_2 x^2 + \cdots) = 1.$$

En développant ce produit et en regroupant selon les puissance de x, il se réécrit

$$\alpha_0 \beta_0 + (\alpha_0 \beta_1 + \alpha_1 \beta_0) x + (\alpha_0 \beta_2 + \alpha_1 \beta_1 + \alpha_2 \beta_0) x^2 + \dots = 1,$$

où le coefficient devant x^n est $\alpha_0 \beta_n + \alpha_1 \beta_{n-1} + \dots + \alpha_n \beta_0 = \sum_{k=0}^n \alpha_k \beta_{n-k}$.

Ainsi, pour tout x appartenant aux domaines de convegence des deux séries,

$$\sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \alpha_k \beta_{n-k} \right) x^n = 1.$$

Par unicité du développement en série entière de la fonction constante égale à 1, cela implique que $\alpha_0\beta_0=1$ et, pour tout $n\in \mathbf{N}^{\star}$, $\sum_{k=0}^{n}\alpha_k\beta_{n-k}=0$. En remarquant que $\alpha_0=1$ par hypothèse, on retrouve bien la condition (\star) .

- (6) On a choisi $r \in]0; R_{\alpha}[$ donc la série $\sum \alpha_k r^k$ est absolument convergente. En particulier, son terme général tend vers 0, autrement dit $|\alpha_k| r^k \underset{k \to +\infty}{\longrightarrow} 0$. Toute suite convergente est bornée, il existe donc $M \in \mathbf{R}$ tel que, pour tout $k \in \mathbf{N}$, $|\alpha_k| r^k \leq M$, ce qui est le résultat demandé.
- (7) La condition (\star) impose que $\beta_0 = 1$. On va maintenant montrer par récurrence que, pour tout $k \in \mathbf{N}^{\star}$, β_k existe, est unique, et vérifie l'inégalité

$$|\beta_k| \le \frac{M(M+1)^{k-1}}{r^k}.$$

Si k = 1, la condition (\star) se réécrit $\alpha_0 \beta_1 + \alpha_1 \beta_0 = 0$, donc $\beta_1 = -\frac{\alpha_1 \beta_0}{\alpha_0} = -\alpha_1$. Le nombre β_1 existe donc bien et est unique. De plus, d'après la question précédente,

$$|\beta_1| = |\alpha_1| \le \frac{M(M+1)^{1-1}}{r^1}.$$

Soit maintenant $k \in \mathbb{N}^*$. On suppose que, pour tout $\ell \leq k$, β_{ℓ} existe, est unique et vérifie l'inégalité (hypothèse de récurrence forte). Alors, d'après la condition (\star) au rang k+1, $\alpha_0\beta_{k+1}+\alpha_1\beta_k+\cdots+\alpha_{k+1}\beta_0=0$, donc $\beta_{k+1}=-\alpha_1\beta_k-\cdots-\alpha_{k+1}\beta_0$. Ainsi le nombre β_{k+1} existe et est uniquement déterminé. De plus, d'après l'inégalité triangulaire,

$$|\beta_{k+1}| \le |\alpha_1 \beta_k| + |\alpha_2 \beta_{k-1}| + \dots + |\alpha_k \beta_1| + |\alpha_{k+1}|$$

En appliquant l'inégalité de l'hypothèse de récurrence à tous les β_{ℓ} et la question (6) à tous les α_{ℓ} , on obtient

$$|\beta_{k+1}| \le \frac{M^2(M+1)^{k-1}}{r^1 r^k} + \frac{M^2(M+1)^{k-2}}{r^2 r^{k-1}} + \dots + \frac{M^2(M+1)^{1-1}}{r^k r^1} + \frac{M}{r^{k+1}}$$

$$\le \frac{M^2 \sum_{\ell=0}^{k-1} (M+1)^{\ell} + M}{r^{k+1}} \le \frac{M^2 \frac{(M+1)^k - 1}{M}}{r^{k+1}} + M \le \frac{M(M+1)^k}{r^{k+1}},$$

ce qui est exactement l'inégalité qu'on souhaitait démontrer.

Par principe de récurrence (forte), on en déduit que (\star) possède une unique solution $(\beta_k)_{k \in \mathbb{N}}$ et que celle-ci vérifie l'inégalité demandée.

(8) D'après le théorème de comparaison des séries entières, l'inégalité de la question précédente implique que le rayon de convergence de $\sum \beta_k x^k$ est supérieur ou égal à celui de $\sum \frac{M(M+1)^{k-1}}{r^k} x^k$. Or, d'après la règle de d'Alembert (les coefficients de cette série ne s'annulant pas), pour tout $x \neq 0$,

$$\left|\frac{M(M+1)^k r^k x^{k+1}}{M(M+1)^{k-1} r^{k+1} x^k}\right| = (M+1) \frac{x}{r}$$

donc le rayon de convergencee de $\sum \frac{M(M+1)^{k-1}}{r^k} x^k$ est $\frac{r}{M+1}$.

On peut donc dire que $R_{\beta} \ge \frac{r}{M+1} > 0$.

(9) Pour tout $x \in]0; r[$,

$$y'(x) = \lambda'(x)J_0(x) + \lambda(x)J_0'(x)$$

$$y''(x) = \lambda''(x)J_0(x) + 2\lambda'(x)J_0'(x) + \lambda(x)J_0''(x)$$

donc

$$y \text{ sol. de } (E) \iff \forall x \in]0; r[\quad x^2 \left(\lambda''(x) J_0(x) + 2\lambda'(x) J_0'(x) + \lambda(x) J_0''(x) \right) \\ + x \left(\lambda'(x) J_0(x) + \lambda(x) J_0'(x) \right) + x^2 \lambda(x) J_0(x) = 0 \\ \iff \forall x \in]0; r[\quad \lambda''(x) x^2 J_0(x) + \lambda'(x) (2x^2 J_0'(x) + x J_0(x)) \\ + \lambda(x) \underbrace{\left(x^2 J_0''(x) + x J_0'(x) + x^2 J_0(x) \right)}_{= 0 \text{ car } J_0 \text{ sol. de } (E)} = 0 \\ \iff \forall x \in]0; r[\quad \lambda''(x) x J_0(x) + \lambda'(x) (2x J_0'(x) + J_0(x)) = 0 \\ \iff \forall x \in]0; r[\quad \lambda''(x) x J_0^2(x) + \lambda'(x) x 2 J_0(x) J_0'(x) + \lambda'(x) J_0^2(x) = 0 \\ \iff \forall x \in]0; r[\quad (\lambda'(x) x J_0^2(x))' = 0.$$

(10) De manière similaire aux calculs menés en question (5), on peut multiplier la série $\sum c_k x^k$ par elle-même, et ainsi écrire

$$J_0^2(x) = \sum_{n=0}^{+\infty} \left(\sum_{k=0}^n c_k c_{n-k} \right) x^k.$$

Cette série est de rayon infini car c'est le produit de deux séries de rayon infini. Enfin, la valeur $J_0^2(0)$ est donnée par le terme constant de cette série entière, c'est-à-dire $J_0^2(0) = c_0^2 = 1$.

(11) D'après la question (9), si λ est une primitive de $\frac{1}{xJ_0(x)^2}$, alors λJ_0 est une solution de (E).

Notons $J_0^2(x) = \sum \alpha_k x^k$. D'après la question (10), c'est une série de rayon de convergence infini et telle que $\alpha_0 = 1$, donc on est dans les hypothèses de la partie précédente (questions (5) à (8)) : il existe une série $g(x) = \sum \beta_k x^k$, de rayon $R_\beta > 0$, telle que $g(x)J_0^2(x) = 1$ (autrement dit, $g(x) = \frac{1}{J_0^2(x)}$) pour tout $|x| < R_\beta$.

D'après la condition (\star) , $\beta_0 = 1$ donc on peut donc écrire, pour tout $x \in]-R_{\beta}; R_{\beta}[$:

$$\frac{1}{J_0^2(x)} = 1 + \sum_{k=1}^{+\infty} \beta_k x^k,$$

puis

$$\frac{1}{xJ_0^2(x)} = \frac{1}{x} + \sum_{k=1}^{+\infty} \beta_k x^{k-1},$$

et une primitive est donc donnée (par théorème d'intégration terme à terme) par

$$\lambda(x) = \ln x + \sum_{k=1}^{+\infty} \frac{\beta_k}{k} x^k$$

Une solution de (E) est donc donnée par

$$\lambda J_0 \colon x \mapsto J_0(x) \ln(x) + J_0(x) \sum_{k=1}^{+\infty} \frac{\beta_k}{k} x^k.$$

En posant $\eta(x) = J_0(x) \sum_{k=1}^{+\infty} \frac{\beta_k}{k} x^k$, développable en série entière comme produit de fonctions développables en série entière (cf calculs de la question (5)).

(12) Notons $J_1: x \mapsto \eta(x) + J_0(x) \ln x$ la solution déterminée à la question précédente. L'équation (E) étant linéaire et homogène, l'ensemble de ses solutions est un espace vectoriel donc l'ensemble des combinaisons linéaires de J_0 et J_1 (càd $\operatorname{Vect}(J_0, J_1)$) est inclus dans l'ensemble des solutions de (E).

De plus, l'équation différentielle étant du second ordre, l'espace des solutions est de dimension 2. Ainsi, si la famille (J_0, J_1) est libre, alors l'ensemble des solutions de (E) sera égal à $Vect(J_0, J_1)$, par égalité des dimensions.

Montrons donc que la famille (J_0,J_1) est libre. D'après la question (3), si cette famille était liée, alors la fonction J_1 serait bornée au voisinage de 0. Or, pour x tendant vers 0, $J_1(x) = \eta(x) + J_0(x) \ln x$ avec $\eta(x) \to \eta(0) \in \mathbf{R}$, $J_0(x) \to 1$ et $\ln x \to -\infty$ donc $J_1(x) \to -\infty$. Ainsi la fonction J_1 n'est pas bornée au voisinage de 0, la famille (J_0,J_1) est donc libre et l'ensemble des solutions est donc

$$Vect(J_0, J_1) = \{AJ_0 + BJ_1 \mid A, B \in \mathbf{R}\}.$$