QUESTIONS DE COURS

- Q1. $\sin(a+b) = \sin a \cos b + \sin b \cos a$. $\cos(2a) = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a$.
- **Q2.** $\sin x = x \frac{x^3}{6} + o(x^3)$ et $\sqrt{1+x} = (1+x)^{1/2} = 1 + \frac{x}{2} \frac{x^2}{8} + \frac{x^3}{16} + o(x^3)$
- **Q3.** Soit $p \in]0;1[$. Une variable aléatoire de Bernoulli de paramètre p est une variable aléatoire X telle que $X(\Omega)=\{0;1\}, \ \mathbf{P}(X=1)=p$ et $\mathbf{P}(X=0)=1-p$. Dans ce cas, $\mathbf{E}(X)=p$ et $\mathbf{V}(X)=p(1-p)$.
- **Q4.** La fonction f est définie et dérivable (et même C^{∞}) sur $]0; +\infty[$ par composition. Pour tout x > 0,

$$f'(x) = \frac{1}{1 + \left(\frac{\ln x}{x}\right)^2} \cdot \frac{\frac{1}{x} \cdot x - \ln x \cdot 1}{x^2} = \frac{1 - \ln x}{x^2 + \ln^2 x}$$

Q5. Pour la première limite : on lève l'indétermination $(\infty - \infty)$ en multipliant par la quantité conjuguée : pour tout x > 1,

$$\sqrt{x^2 + 1} - \sqrt{x^2 - 1} = \frac{x^2 + 1 - (x^2 - 1)}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}} = \frac{2}{\sqrt{x^2 + 1} + \sqrt{x^2 - 1}} \xrightarrow[x \to +\infty]{} 0$$

Pour la deuxième limite : on lève l'indétermination $(\frac{0}{0})$ en recherchant un équivalent du numérateur et du dénominateur. Pour $x \to 0$,

$$x\cos x - \sin x = x\left(\left(1 - \frac{x^2}{2} + o(x^2)\right) - \left(x - \frac{x^3}{6} + o(x^3)\right)$$
$$= -\frac{x^3}{3} + o(x^3) \sim -\frac{x^3}{3}.$$

Par ailleurs, $\ln(1+x) \sim x$ donc $x^2 \ln(1+x) \sim x^3$. Ainsi,

$$\frac{x\cos x - \sin x}{x\ln(1+x)} \sim \frac{-\frac{x^3}{3}}{x^3} \sim -\frac{1}{3} \underset{x\to 0}{\longrightarrow} -\frac{1}{3}.$$

Exercice I

Pour tout $x \ge 0$, on pose $f(x) = \ln(2+x)$ et g(x) = f(x) - x.

Q1. La fonction g est continue sur \mathbf{R}_+ par composition. On sait que 3 > e donc $\ln 3 > 1$ donc g(1) > 0. Par ailleurs, $g(2) = \ln(4) - 2 = 2 \ln 2 - 2 \simeq -0.6 < 0$. D'après le théorème des valeurs intermédiaires, il existe donc $\alpha \in]0; 1[$ tel que $g(\alpha) = 0$.

Reste à montrer l'unicité. Pour cela, remarquons que g est dérivable sur \mathbf{R}_+ par composition. Pour tout $x \geq 0$, $g'(x) = \frac{1}{x+2} - 1 = \frac{-x-1}{x+2} < 0$. La fonction g est donc strictement décroissante sur \mathbf{R}_+ , ce qui démontre que α est unique.

Q2. On remarque que, pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. De plus, la fonction f est dérivable (par composition) et croissante sur \mathbb{R}_+ car $f'(x) = \frac{1}{x+2} \ge 0$ pour tout $x \ge 0$. Enfin, remarquons que $f(\alpha) = \alpha$ par définition de α .

Montrons la proposition demandée par récurrence.

Pour n = 0, $u_0 = 0 \in [0; \alpha]$.

Soit $n \in \mathbb{N}$. On suppose que $u_n \in [0; \alpha]$. Alors, par croissance de f, $f(u_n) \in [f(0), f(\alpha)]$, autrement dit $u_{n+1} \in [\ln(2); \alpha] \subset [0; \alpha]$.

Par principe de récurrence, on a donc $u_n \in [0; \alpha]$ pour tout $n \in \mathbb{N}$.

Q3. Il s'agit de montrer que, pour tout $n \in \mathbb{N}$, $u_n \leq u_{n+1}$, autrement dit que $u_n \leq f(u_n)$. Pour cela, montrons que $f(x) \geq x$ pour tout $x \in [0; \alpha]$, autrement dit que $g(x) \geq 0$. On a montré à la question **Q1** que g est strictement décroissante sur \mathbb{R}_+ . Or $g(\alpha) = 0$, donc pour tout $x \geq 0$, si $x \leq \alpha$, alors $g(x) \geq g(\alpha) = 0$.

D'après la question précédente, pour tout $n \in \mathbf{N}$ $u_n \in [0; \alpha]$ donc $g(u_n) \geq 0$, autrement dit $f(u_n) \geq u_n$ soit $u_{n+1} \geq u_n$. La suite est donc croissante.

- **Q4.** D'après les deux questions précédentes, la suite $(u_n)_{n \in \mathbb{N}}$ est croissante et majorée donc elle converge.
- **Q5.** Par définition de ℓ , $u_n \underset{n \to +\infty}{\longrightarrow} \ell$. La fonction f étant continue, on en déduit que $f(u_n) \underset{n \to +\infty}{\longrightarrow} f(\ell)$, autrement dit $u_{n+1} \underset{n \to +\infty}{\longrightarrow} f(\ell)$. Mais la suite $(u_{n+1})_{n \in \mathbb{N}}$ est une suite extraite de $(u_n)_{n \in \mathbb{N}}$ qui converge vers ℓ , elle doit donc converger vers la même limite. On doit donc avoir $u_{n+1} \underset{n \to +\infty}{\longrightarrow} \ell$. Par unicité de la limite, on en déduit que $f(\ell) = \ell$. L'unique nombre vérifiant l'équation f(x) = x est α , on a donc nécessairement $\ell = \alpha$.
- **Q6.** La fonction f est continue sur $[0; \alpha]$, dérivable sur $]0; \alpha[$ et, pour tout $x \in]0; \alpha[$, $|f'(x)| = \frac{1}{|x+2|} \leq \frac{1}{2}$. D'après l'inégalité des accroissements finis, pour tous $x, y \in [0; \alpha]$, $|f(x) f(y)| \leq \frac{1}{2}|x y|$. En particulier pour $x = u_n$ et $y = \alpha$, on obtient l'inégalité demandée.
- **Q7.** Par récurrence immédiate, d'après la question précédente, pour tout $n \in \mathbb{N} |u_n \alpha| \leq 2^{-n} |u_0 \alpha|$. Or $u_0 = 0$ et $\alpha \in]1; 2[$ donc $|u_0 \alpha| \leq 2$, d'où $|u_n \alpha| \leq 2^{-n} \cdot 2 = 2^{1-n}$.

- **Q8.** D'après la question précédente, u_n est une approximation de α à 2^{1-n} près. On en déduit que le calcul de u_{11} permet d'approximer α au millième (car $2^{1-11} = 2^{-10} = \frac{1}{1024}$).
 - 1 from math import log
 - 2 def alpha():
 - u = 0
 - 4 for k in range(11):
 - 5 u = log(2+u)
 - 6 return u

Exercice II

Q1. dim
$$(\mathbf{R}_3[X]) = 4$$
 et $\mathcal{B} = (1, X, X^2, X^3)$.

Q2. Il s'agit de vérifier que u est linéaire et que son ensemble d'arrivée est bien contenu dans $\mathbf{R}_3[X]$.

Linéarité : soient $P, Q \in \mathbf{R}_3[X]$ et $\lambda, \mu \in \mathbf{R}$. Alors

$$\begin{split} u(\lambda P + \mu Q) &= \lambda P + \mu Q - \frac{1}{3}(X - a)(\lambda P + \mu Q)' \\ &= \lambda P + \mu Q - \frac{1}{3}(X - a)(\lambda P' + \mu Q') \quad \text{car la dérivation est linéaire} \\ &= \lambda P - \frac{\lambda}{3}(X - a)P' + \mu Q - \frac{\mu}{3}(X - a)Q' \\ &= \lambda \cdot u(P) + \mu \cdot u(Q). \end{split}$$

L'application u est donc linéaire. Reste à voir que, pour tout $P \in \mathbf{R}_3[X]$, le polynôme u(P) est bien de degré inférieur ou égal à 3. Soit donc $P \in \mathbf{R}_3[X]$. Alors deg $P \leq 3$ et deg $P' \leq 2$ donc deg $((X - a)P') = 1 + \deg P' \leq 1 + 2 = 3$. Le polynôme u(P) est ainsi une somme de deux polynômes de degré inférieur ou égal à 3 et son degré est donc inférieur ou égal à 3. L'application u est donc bien un endomorphisme de $\mathbf{R}_3[X]$.

Q3. On calcule les images des vecteurs de $\mathcal B$ par l'application u:

$$u(1) = 1 - \frac{1}{3}(X - a) \cdot 0 = 1$$

$$u(X) = X - \frac{1}{3}(X - a) \cdot 1 = \frac{2}{3}X + \frac{a}{3}$$

$$u(X^{2}) = X^{2} - \frac{1}{3}(X - a) \cdot 2X = \frac{1}{3}X^{2} + \frac{2a}{3}X$$

$$u(X^{3}) = X^{3} - \frac{1}{3}(X - a) \cdot 3X^{2} = aX^{2},$$

d'où

$$\operatorname{Mat}_{\mathcal{B}} u = \begin{pmatrix} 1 & a/3 & 0 & 0 \\ 0 & 2/3 & 2a/3 & 0 \\ 0 & 0 & 1/3 & a \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

- **Q4.** La famille \mathcal{B}' est échelonnée en degré donc c'est une famille libre. Par ailleurs elle est constituée de 4 vecteurs dans $\mathbf{R}_3[X]$ qui est de dimension 4, c'est donc une base de $\mathbf{R}_3[X]$.
- **Q5.** D'après la question **Q3**, $u((X-a)^0) = u(1) = 1$. Par ailleurs, pour tout $k \in \{1, 2, 3\}$,

$$u((X-a)^k) = (X-a)^k - \frac{1}{3}(X-a) \cdot k \cdot (X-a)^{k-1} = \frac{3-k}{3}(X-a)^k.$$

On en déduit

$$\operatorname{Mat}_{\mathcal{B}'} u = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2/3 & 0 & 0 \\ 0 & 0 & 1/3 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

Q6. On sait que le rang d'une application linéaire est égal au rang de sa matrice dans n'importe quelle base. Ainsi, le rang de u est égal au rang de la matrice construite à la question précédente, qui est égal à 3.

D'après le théorème du rang, on en déduit que

$$\dim(\ker u) = \dim(\mathbf{R}_3[X]) - \mathrm{rg}(u) = 4 - 3 = 1.$$

On a vu à la question précédente que $(X-a)^3 \in \ker u$. La famille $\left((X-a)^3\right)$ est composée d'un unique vecteur non nul, elle est donc libre et incluse dans $\ker u$ qui est de dimension 1, on en déduit que c'est une base de $\ker u$.

Enfin, la famille $(u(1), u(X-a), u(X-a)^2, u(X-a)^3)$ est une famille génératrice de l'image de u. Comme $u((X-a)^3)=0$, on peut l'enlever de la famille sans modifier l'espace engendré. En remplaçant chacun des autres $u((X-a)^k)$ par sa valeur (et en multipliant chaque vecteur par un scalaire non nul pour éliminer les fractions), on obtient donc la famille génératrice de $\operatorname{Im} u$ suivante : $(1, (X-a), (X-a)^2)$. C'est une famille génératrice constituée de 3 vecteurs dans $\operatorname{Im} u$ qui est de dimension 3 (le rang de u), c'est donc une base de l'image de u.