Samedi 7 septembre 2024 - Durée : 3h

L'usage de la calculatrice n'est pas autorisé.

Problème I

Dans ce problème, on étudie les fonctions trigonométriques hyperboliques sh et ch, définies sur ${\bf R}$ par

$$\forall t \in \mathbf{R} \quad \text{ch}(t) = \frac{e^t + e^{-t}}{2} \quad \text{et} \quad \text{sh}(t) = \frac{e^t - e^{-t}}{2}.$$

Étude de fonctions.

- Q1. (a) Étudier la parité des fonctions ch et sh.
 - (b) Montrer que les fonctions ch et sh sont dérivables et que, pour tout $t \in \mathbf{R}$, on a $\mathrm{ch}'(t) = \mathrm{sh}(t)$ et $\mathrm{sh}'(t) = \mathrm{ch}(t)$.
 - (c) Dériver la fonction $f: \mathbf{R} \to \mathbf{R}$ définie par $f(t) = (\operatorname{ch}(t))^2 (\operatorname{sh}(t))^2$ pour tout $t \in \mathbf{R}$. En déduire une relation entre $(\operatorname{ch}(t))^2$ et $(\operatorname{sh}(t))^2$.
- **Q2.** Tracer les tableaux de variations des fonctions ch et sh. On précisera les limites en $-\infty$ et $+\infty$. On y fera apparaître les valeurs de ch et sh en 0.
- **Q3.** (a) En se basant sur les variations de sh, montrer que l'équation sh(t) = 1, d'inconnue t, admet une unique solution réelle, que l'on notera dans la suite α .
 - (b) On pose $z = e^{\alpha}$. Montrer que $z^2 2z 1 = 0$.
 - (c) En déduire la valeur exacte de α .
 - (d) Montrer que $0 \le \alpha \le 1$.
- **Q4.** Montrer que $ch(\alpha) = \sqrt{2}$.

Suite d'intégrales. Pour tout $n \in \mathbb{N}$, on définit l'intégrale $I_n = \int_0^{\alpha} (\operatorname{sh}(t))^{2n} dt$ (le nombre $\alpha \in [0; 1]$ étant défini dans la partie précédente).

- **Q5.** Montrer que $I_0 = \alpha$.
- **Q6.** Montrer que la suite $(I_n)_{n\in\mathbb{N}}$ est décroissante et strictement positive (indication : on pourra remarquer que, pour tout $t\in[0;\alpha]$, on $a\ 0\leq \operatorname{sh}(t)\leq 1$). En déduire qu'elle est convergente.
- **Q7.** (a) À l'aide d'une intégration par parties, montrer que, pour tout $n \in \mathbb{N}$,

$$I_{n+1} = \operatorname{ch}(\alpha) - (2n+1)(I_{n+1} + I_n)$$

 $(indication: on \ pour remarquer \ que \ (\operatorname{sh}(t))^{2n+2} = (\operatorname{sh}(t))^{2n+1} \times \operatorname{sh}(t))$

(b) En déduire que, pour tout $n \in \mathbf{N}$,

$$I_{n+1} = \frac{\sqrt{2}}{2n+2} - \left(\frac{2n+1}{2n+2}\right)I_n.$$

(c) Quelle est la limite de la suite $(I_n)_{n \in \mathbb{N}}$?

(d'après ATS 2019)

Problème II

Soient m et n deux entiers naturels, avec $1 \le m \le n$. On considère deux dés équilibrés, l'un à m et l'autre à n faces, numérotées respectivement de 1 à m et de 1 à n.

Q1. On lance le dé à n faces et on note X la variable aléatoire égale au résultat obtenu. Rappeler la loi de X, son espérance et sa variance.

On considère maintenant le jeu suivant : on lance le dé à m faces, et on gagne un nombre de points égal au résultat de ce dé. Cependant, si le dé tombe sur sa face la plus élevée, il « explose » ; on peut alors lancer le dé à n faces et ajouter son résultat au total des points gagnés.

Exemples avec m = 4 et n = 6:

- Alex lance le dé à 4 faces et obtient 2. Total : 2 points gagnés.
- Ify lance le dé à 4 faces et obtient 4: le dé « explose », Ify peut lancer le dé à 6 faces, il obtient 3. Total : 4 + 3 = 7 points gagnés.
- **Q2.** On note X_1 le résultat du dé à m faces et X_2 le résultat du dé à n faces, avec la convention que $X_2 = 0$ si ce dé n'est pas lancé. On note Y le nombre total de points obtenus; on peut remarquer que $Y = X_1 + X_2$.
 - (a) Donner l'univers-image $Y(\Omega)$ de Y.
 - (b) Pour tout $y \in [1; m-1]$, donner $\mathbf{P}(Y=y)$.
 - (c) Pour tout $y \in [m+1; m+n]$, donner la probabilité conditionnelle $\mathbf{P}(Y=y \mid X_1=m)$, puis en déduire $\mathbf{P}(Y=y)$.
 - (d) Que dire de P(Y = m)?
- **Q3.** Vérifier que $\mathbf{E}(Y) = \frac{1}{2} \left(m + \frac{n}{m} + \frac{1}{m} + 1 \right)$.

On laisse maintenant aux joueuses le choix :

- soit lancer le dé à m faces, avec la possibilité que celui-ci « explose » comme décrit ci-dessus ;
- \bullet soit lancer uniquement le dé à n faces.

On se demande, en fonction des valeurs de m et n, laquelle des deux options est la plus avantageuse. Il s'agit d'étudier, en fonction de m et n, le signe de la quantité :

$$D_{m,n} = \mathbf{E}(Y) - \mathbf{E}(X) = \frac{1}{2} \left(m - n + \frac{n}{m} + \frac{1}{m} \right).$$

Fixons m et étudions la quantité $D_{m,n}$ comme une suite de la variable n; dans la suite, on l'écrira simplement D_n pour alléger la notation.

- **Q4.** Vérifier que $(D_n)_{n\geq m}$ est une suite arithmétique; donner sa raison et en déduire ses variations.
- **Q5.** Montrer que $D_n \ge 0 \iff n \le \frac{m^2+1}{m-1}$.
- **Q6.** Vérifier que $\frac{m^2+1}{m-1} \ge m+1$ pour tout $m \ge 2$. En déduire la stratégie optimale dans le cas où n=m+1.
- **Q7.** Montrer que, si m > 3, alors $\frac{m^2+1}{m-1} < m+2$. En déduire la stratégie dans le cas où m > 3 et $n \ge m+2$.
- **Q8.** Calculer $\frac{m^2+1}{m-1}$ dans le cas où m=2 ou 3. En déduire la stratégie optimale dans ce cas.

(d'après Mulligan et al., Never stop blowing up (2024))

Problème III

On considère la fonction $f: \mathbb{C} \setminus \{-1\} \to \mathbb{C}$ définie par :

$$\forall z \in \mathbf{C} \setminus \{-1\}$$
 $f(z) = \frac{z-1}{z+1}$.

Les parties A et B de ce problème peuvent être traitées de manière indépendante.

Partie A – Lieux de points. Les trois questions de cette partie peuvent être traitées de manière indépendante.

- Q1. Soient les trois nombres complexes a = 1, b = -3 et $c = \frac{-3+i2\sqrt{3}}{3}$. Calculer f(a), f(b) et f(c) et montrer que les points A, B, C d'affixes respectives f(a), f(b) et f(c) forment un triangle équilatéral.
- **Q2.** Déterminer l'ensemble des points M d'affixe z tels que |f(z)| = 1.
- **Q3.** Déterminer l'ensemble des points M d'affixe z tels que |f(z)| = 2.

III.A. Partie B – Étude d'une suite récurrente.

- **Q4.** (a) Montrer que l'équation f(z) = 1 n'a pas de solution; puis montrer que, pour tout nombre complexe $\omega \neq 1$, l'équation $f(z) = \omega$ admet une unique solution que l'on exprimera en fonction de ω .
 - (b) La fonction f est-elle injective? surjective?
 - (c) Montrer que, pour tout nombre complexe $z \in \mathbf{C} \setminus \{-1; 0; 1\}$, on a $f(z) \in \mathbf{C} \setminus \{-1; 0; 1\}$.

On considère la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$u_0 \in \mathbf{C} \setminus \{-1; 0; 1\}$$
 et $\forall n \in \mathbf{N} \ u_{n+1} = f(u_n)$.

- **Q5.** (a) Résoudre l'équation f(z) = z.
 - (b) Que dire de la suite $(u_n)_{n \in \mathbb{N}}$ si $u_0 \in \{-i; i\}$?
 - (c) Montrer que si $u_0 \notin \{-i; i\}$, alors pour tout $n \in \mathbb{N}$, $u_n \notin \{-i; i\}$.

On suppose maintenant que $u_0 \in \mathbf{C} \setminus \{-1; 0; 1; -i; i\}$ et on introduit la suite $(v_n)_{n \in \mathbf{N}}$ définie par

$$\forall n \in \mathbf{N} \ v_n = \frac{u_n - i}{u_n + i}.$$

D'après la question précédente, la suite $(v_n)_{n\in\mathbb{N}}$ est bien définie puisque $u_0 \neq -i$ donc, pour tout entier naturel n, on a $u_n \neq -i$.

- **Q6.** (a) Démontrer que la suite $(v_n)_{n\in\mathbb{N}}$ est une suite géométrique de raison -i.
 - (b) Montrer que la suite $(v_n)_{n \in \mathbb{N}}$ est périodique de période 4 (c'est-à-dire que $v_{n+4} = v_n$ pour tout $n \in \mathbb{N}$) et que ses termes sont les affixes d'un carré.
 - (c) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est également périodique de période 4.

(d'après ATS 2020)