Samedi 5 octobre 2024 – Durée : 4h

L'usage de la calculatrice n'est pas autorisé.

Problème I

On s'intéresse à l'endomorphisme f de ${\bf R}^3$ dont la matrice dans la base canonique est donnée par

$$A = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 1 \\ 1 & -1 & 1 \end{pmatrix}.$$

On rappelle que, si f est un endomorphisme, on note $f^2 = f \circ f$, $f^3 = f \circ f \circ f$, etc. (et, par convention, $f^0 = \mathrm{id}$).

I.A. Généralités.

- **Q1.** Calculer A^2 et A^3 . En déduire que $A^3 4A^2 + 5A = 2I_3$.
- $\mathbf{Q2}$. En déduire que A est inversible et calculer son inverse.
- **Q3.** Déterminer l'image et le noyau de f.

I.B. Recherche d'une base adaptée.

- **Q4.** On s'intéresse à l'ensemble $F_1 = \{u \in \mathbf{R}^3 \mid f(u) = u\}$. Montrer que F_1 est un sous-espace vectoriel de \mathbf{R}^3 .
- **Q5.** Montrer que F_1 est de dimension 1 et en donner une base (e_1) .
- **Q6.** On pose $e_2 = (0,0,1)$. Exprimer $f(e_2)$ en fonction de e_1 et e_2 .
- **Q7.** Montrer que $F_2 = \{u \in \mathbf{R}^3 \mid f(u) = 2u\}$ est de dimension 1 et en donner une base (e_3) .
- **Q8.** Montrer que $\mathcal{B} = (e_1, e_2, e_3)$ est une base de \mathbf{R}^3 .
- **Q9.** Déterminer la matrice T de f dans la base \mathcal{B} .

I.C. Calcul des puissances de A.

- **Q10.** Pour tout $k \in \mathbb{N}$, calculer $f^k(e_2)$.
- **Q11.** En déduire, pour tout $k \in \mathbb{N}$, la matrice T^k .
- $\mathbf{Q12.}$ Donner une relation entre T et A. En déduire que

$$A^k = PT^kP^{-1}$$
, où $P = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}$.

On ne demande pas de justifier que P est inversible.

- **Q13.** Calculer P^{-1} .
- **Q14.** En déduire, pour tout $k \in \mathbb{N}$, la matrice A^k .

Problème II

On rappelle que, pour tous x réel strictement positif et α réel, on note $x^{\alpha} = e^{\alpha \ln(x)}$. On considère la fonction $g \colon x \mapsto x^x$ définie sur l'intervalle $I =]0; +\infty[$.

II.A. Étude de la fonction g.

- **Q1.** Calculer g(1) et justifier que g est dérivable sur I.
- $\mathbf{Q2.}$ Dresser le tableau de variations de g et préciser ses limites aux bornes de I.
- **Q3.** Déterminer l'équation de la tangente au point d'abscisse 1 à la courbe représentative de g.
- **Q4.** On admet que, pour $x \to 1$, $g(x) = 1 + (x-1) + (x-1)^2 + o((x-1)^2)$. Déterminer la position relative de la tangente au point d'abscisse 1 par rapport à la courbe représentative de g.
- **Q5.** Représenter sur l'intervalle]0; 2] la courbe représentative de g et la tangente obtenue dans la question précédente sur le même graphique. On donne $e^{-1} \simeq 0.37$ et $g(e^{-1}) \simeq 0.69$.
- **Q6.** À l'aide du graphique, justifier l'encadrement $e^{-1} < \int_0^1 x^x \, \mathrm{d}x < 1$.

II.B. Une approximation plus précise de $\int_0^1 x^x dx$.

- II.1. Un calcul d'intégrales.
- **Q7.** Soit $n \in \mathbb{N}$. Calculer $\int_0^1 x^n dx$.
- **Q8.** Soient $(n,k) \in \mathbb{N}^* \times \mathbb{N}$. Justifier que la fonction $x \mapsto x^n \ln(x)^k$ est prolongeable par continuité en 0 et que son prolongement prend la valeur 0 en 0.

Dans la suite, on notera de la même manière la fonction prolongée.

Q9. Soient $(n,k) \in \mathbf{N}^* \times \mathbf{N}$. À l'aide d'une intégration par parties, montrer que

$$\int_0^1 x^n (\ln(x))^k dx = -\frac{k}{n+1} \int_0^1 x^n (\ln(x))^{k-1} dx.$$

Q10. Soit $n \in \mathbb{N}^*$. À l'aide d'une récurrence sur k, en déduire que, pour tout $k \in \mathbb{N}$, on a :

$$\int_0^1 x^k (\ln(x))^k dx = \frac{(-1)^k k!}{(n+1)^{k+1}}$$

Justifier que cette égalité est toujours vraie si n=k=0.

- II.2. Expression de $\int_0^1 x^x dx$ à l'aide d'une série.
- **Q11.** Soit $z \in \mathbf{R}$. Montrer que la série de terme général $\frac{z^n}{n!}$ est convergente.

On admet que, pour tout $z \in \mathbf{R}$, $\sum_{n=0}^{+\infty} \frac{z^n}{n!} = e^z$.

Q12. Justifier que $\int_0^1 x^x dx = \sum_{n=0}^{+\infty} \int_0^1 \frac{(x \ln(x))^n}{n!} dx$ (on admettra que, dans le cas présent, la propriété de l'intégrale reste valable pour une somme infinie).

- **Q13.** En déduire l'égalité $\int_0^1 x^x dx = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(n+1)^{n+1}}$.
- **Q14.** Soit $p \in \mathbb{N}$. On note $R_p = \sum_{n=p+1}^{+\infty} \frac{(-1)^n}{(n+1)^{n+1}}$ le reste au rang p de la série de terme général $\frac{(-1)^n}{(n+1)^{n+1}}$. On admet que $|R_p| \leq \frac{1}{(p+2)^{p+2}}$.
 - (a) Donner une valeur approchée de $\int_0^1 x^x dx$ à $\frac{1}{27}$ près.
 - (b) Écrire en Python une fonction approximation(h) qui prend en paramètre un réel strictement positif h et renvoie un nombre réel représentant une approximation de $\int_0^1 x^x dx$ à h près.

(d'après CCINP 2021)

Problème III

III.A. Polynômes de Bernoulli.

- **Q1.** Montrer soigneusement que l'application $\psi \colon P \mapsto \int_0^1 P(t) dt$ est une forme linéaire sur $\mathbf{R}[X]$.
- **Q2.** Soit $H = \left\{ P \in \mathbf{R}[X] \middle| \int_0^1 P(t) dt = 0 \right\}$. Montrer que H est un sous-espace vectoriel de $\mathbf{R}[X]$.
- **Q3.** Montrer que $\mathbf{R}[X] = H \oplus \mathbf{R}_0[X]$. On pourra utiliser le fait que, pour tout $P \in \mathbf{R}[X]$,

$$P = \left(P - \int_0^1 P(t) dt\right) + \int_0^1 P(t) dt.$$

Pour tout $P \in H$, on pose D(P) = P'. Ceci définit une application linéaire $D: H \to \mathbf{R}[X]$.

- $\mathbf{Q4.}$ Montrer que D est surjective.
- **Q5.** Montrer que D est un isomorphisme.

On note $\varphi = D^{-1}$ l'isomorphisme réciproque de D. Ainsi, si $A \in \mathbf{R}[X]$, le polynôme $B = \varphi(A)$ est l'unique polynôme de H tel que B' = A.

Q6. Soit $P \in \mathbf{R}[X]$. On note Q la fonction définie sur \mathbf{R} par

$$\forall x \in \mathbf{R} \quad Q(x) = \int_0^x P(t) \, \mathrm{d}t + \int_0^1 (t-1)P(t) \, \mathrm{d}t.$$

- (a) Montrer que $Q \in H$.
- (b) Vérifier que $Q = \varphi(P)$.

On s'intéresse maintenant à la suite de polynômes $(B_n)_{n\in\mathbb{N}}$ définie par $B_0=1$ et la relation de récurrence $B_{n+1}=\varphi(B_n)$ pour tout $n\in\mathbb{N}$. Pour tout $n\in\mathbb{N}$, le polynôme nB_n est appelé n-ème polynôme de Bernoulli.

- **Q7.** Calculer B_1 et B_2 .
- **Q8.** Montrer que, pour tout entier $n \ge 2$, $B_n(0) = B_n(1)$.

Pour tout entier $n \in \mathbb{N}$, on définit le polynôme C_n par

$$C_n(X) = (-1)^n B_n(1-X)$$

- **Q9.** Pour tout entier $n \in \mathbb{N}$, exprimer C'_{n+1} en fonction de C_n .
- **Q10.** Montrer que, pour tout $n \in \mathbb{N}$, $C_{n+1} = \varphi(C_n)$.
- **Q11.** En déduire que, pour tout $n \in \mathbb{N}$ et pour tout $x \in \mathbb{R}$, $B_n(1-x) = (-1)^n B_n(x)$.
- **Q12.** Pour tout $n \in \mathbf{N}^*$, montrer que $B_{2n+1}(0) = B_{2n+1}(1) = 0$.
- III.B. Formule d'Euler-Maclaurin. Dans toute la suite, n désigne un entier naturel non nul et f une fonction de classe \mathcal{C}^{2n} sur [0;1]. Pour tout entier $k \in [0;2n]$, on note $f^{(k)}$ la dérivée d'ordre k de la fonction f.

Enfin, pour tout $k \in \mathbb{N}$, on note $b_k = B_k(0)$. Le nombre kb_k est appelé k-ème nombre de Bernoulli.

On pose

$$J_n = \int_0^1 B_{2n}(t) f^{(2n)}(t) dt.$$

- **Q13.** Si $n \ge 2$, montrer que $J_n = b_{2n} (f^{(2n-1)}(1) f^{(2n-1)}(0)) + J_{n-1}$.
- Q14. Montrer que

$$\int_0^1 f(t) dt = \frac{f(0) + f(1)}{2} - b_2 (f'(1) - f'(0)) + J_1.$$

Q15. En déduire que

$$\int_0^1 f(t) dt = \frac{f(1) + f(0)}{2} - \sum_{k=1}^n b_{2k} \left(f^{(2k-1)}(1) - f^{(2k-1)}(0) \right) + J_n.$$

Q16. Soit g une fonction de classe C^{2n} sur un intervalle [a;b] avec a < b. En considérant la fonction $x \mapsto g((1-x)a+bx)$ définie sur [0;1], montrer la formule d'Euler-Maclaurin:

$$\int_{a}^{b} g(t) dt = \frac{b-a}{2} \Big(g(b) - g(a) \Big) - \sum_{k=1}^{n} (b-a)^{2k} b_{2k} \Big(g^{(2k-1)}(b) - g^{(2k-1)}(a) \Big) + R_{n},$$
où $R_{n} = \int_{0}^{1} (b-a)^{(n+1)} B_{2n}(t) g^{(2n)} \Big((1-t)a + bt \Big) dt.$

(d'après Centrale-Supélec 2014)

* *