Exercice I

 $\mathbf{Q1.}$ (a) (V_n, J_n, R_n) est un système complet d'événements. D'après la formule des probabilités totales,

$$v_{n+1} = \mathbf{P}(V_{n+1}) = \mathbf{P}(V_{n+1} \mid V_n)\mathbf{P}(V_n) + \mathbf{P}(V_{n+1} \mid J_n)\mathbf{P}(J_n) + \mathbf{P}(V_{n+1} \mid R_n)\mathbf{P}(R_n)$$

= $\frac{1}{2}v_n + \frac{1}{4}j_n + \frac{1}{4}r_n$.

(b) De même,

$$\begin{cases} j_{n+1} = \frac{1}{4}v_n + \frac{1}{2}j_n \\ r_{n+1} = \frac{1}{4}v_n + \frac{1}{4}j_n + \frac{1}{2}r_n \end{cases}$$

(c) Le drapeau étant vert le jour numéro 0, on a $v_0 = 1$ et $j_0 = r_0 = 0$, ainsi $X_0 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$. De plus, d'après les deux questions précédentes, pour tout $n \in \mathbb{N}$, on a

$$X_{n+1} = \frac{1}{4} \begin{pmatrix} 2v_n + j_n + r_n \\ v_n + 2j_n \\ v_n + j_n + 2r_n \end{pmatrix} = AX_n.$$

Q2. (a) On calcule le polynôme caractéristique de A. Pour tout $\lambda \in \mathbf{R}$

$$\chi_{A}(\lambda) = \frac{1}{4^{3}} \begin{vmatrix} 4\lambda - 2 & -1 & -2 \\ -1 & 4\lambda - 2 & 0 \\ -1 & -1 & 4\lambda - 2 \end{vmatrix} = \frac{1}{C_{1} \leftarrow C_{1} - C_{2}} \frac{1}{4^{3}} \begin{vmatrix} 4\lambda - 1 & -1 & -2 \\ 1 - 4\lambda & 4\lambda - 2 & 0 \\ 0 & -1 & 4\lambda - 2 \end{vmatrix}$$

$$= \frac{1}{L_{2} \leftarrow L_{2} + L_{1}} \frac{1}{4^{3}} \begin{vmatrix} 4\lambda - 1 & -1 & -2 \\ 0 & 4\lambda - 3 & -2 \\ 0 & -1 & 4\lambda - 2 \end{vmatrix} = \frac{1}{4^{3}} (4\lambda - 1) \begin{vmatrix} 4\lambda - 3 & -2 \\ -1 & 4\lambda - 2 \end{vmatrix}$$

$$= \frac{1}{4^{3}} (4\lambda - 1) (16\lambda^{2} - 20\lambda + 4) = (\lambda - \frac{1}{4}) (\lambda^{2} - \frac{5}{4}\lambda + \frac{1}{4})$$

$$= (\lambda - \frac{1}{4})^{2} (\lambda - 1).$$

Ainsi, les valeurs propres de A sont $\frac{1}{4}$ (double) et 1 (simple).

(b) Il s'agit de résoudre les systèmes $AX = \lambda X$ pour $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbf{R}^3$ et $\lambda \in \left\{ \frac{1}{4}; 1 \right\}$.

$$AX = X \iff \begin{cases} 2x + y + 2z = 4x \\ x + 2y = 4y \\ x + y + 2z = 4z \end{cases} \iff \begin{cases} -2x + y + 2z = 0 \\ x - 2y = 0 \\ x + y - 2z = 0 \end{cases}$$
$$\iff \begin{cases} -4y + y + 2z = 0 \\ x = 2y \\ 2y + y - 2z = 0 \end{cases} \iff \begin{cases} -3y + 2z = 0 \\ x = 2y \\ 3y - 2z = 0 \end{cases}$$
$$\iff \begin{cases} x = 2y \\ z = \frac{3}{2}y \end{cases}$$

Ainsi, $E_1 = \text{Vect}\left[\begin{pmatrix} \frac{4}{2} \\ \frac{2}{3} \end{pmatrix}\right]$, de dimension 1. D'autre part,

$$AX = \frac{1}{4}X \iff \left\{ \begin{array}{l} 2x + y + 2z = x \\ x + 2y = y \\ x + y + 2z = z \end{array} \right. \iff \left\{ \begin{array}{l} x + y + 2z = 0 \\ x + y = 0 \\ x + y + z = 0 \end{array} \right. \iff \left\{ \begin{array}{l} x + y = 0 \\ z = 0 \end{array} \right.$$

Ainsi, $E_{1/4} = \text{Vect}\left[\left(\begin{array}{c} 1\\ -1\\ 0 \end{array}\right)\right]$, de dimension 1.

- (c) La valeur propre $\frac{1}{4}$ est de multiplicité 2 tandis que son sous-espace propre associé est de dimension 1, la matrice A n'est donc pas diagonalisable.
- **Q3.** Soit f un endomorphisme de \mathbb{R}^3 , de matrice A dans la base canonique \mathcal{B} .

1

(a) D'après la question précédente, e'_1 et e'_2 sont des vecteurs propres de f associés respectivement aux valeurs propres 1 et $\frac{1}{4}$, ce qui correspond aux deux premières colonnes de la matrice T. Pour que la troisième colonne soit correcte, il s'agit de résoudre :

$$f(e_3') = \frac{3}{4}e_2' + \frac{1}{4}e_3',$$

soit:

$$\frac{1}{4} \begin{pmatrix} 2a+2b \\ a \\ a+2b \end{pmatrix} = \frac{3}{4} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} + \frac{1}{4} \begin{pmatrix} a \\ 0 \\ b \end{pmatrix},$$

soit:

$$\begin{cases} 2a + 2b = 3 + a \\ a = -3 \\ a + 2b = b \end{cases} \iff \begin{cases} a = -3 \\ b = 3 \end{cases}$$

Enfin, la famille (e'_1, e'_2, e'_3) étant une famille de trois vecteurs de \mathbb{R}^3 (qui est de dimension 3), pour vérifier que c'est une base il suffit de calculer le déterminant :

$$\begin{vmatrix} 4 & 1 & -3 \\ 2 & -1 & 0 \\ 3 & 0 & 3 \end{vmatrix} \stackrel{=}{\underset{3^{e} \text{ ligne}}{=}} 3 \begin{vmatrix} 1 & -3 \\ -1 & 0 \end{vmatrix} + 3 \begin{vmatrix} 4 & 1 \\ 2 & -1 \end{vmatrix} = -9 - 18 = -27 \neq 0.$$

(b)
$$Q = \begin{pmatrix} 4 & 1 & -3 \\ 2 & -1 & 0 \\ 3 & 0 & 3 \end{pmatrix}$$
. Calculons Q^{-1} :

$$\begin{pmatrix} 4 & 1 & -3 & 1 & 0 & 0 \\ 2 & -1 & 0 & 0 & 1 & 0 \\ 3 & 0 & 3 & 0 & 1 \end{pmatrix} \xrightarrow{\sim} \begin{pmatrix} 4 & 1 & -3 & 1 & 0 & 0 \\ 0 & -\frac{3}{2} & \frac{3}{2} & -\frac{1}{2} & 1 & 0 \\ 0 & -\frac{3}{4} & \frac{21}{4} & -\frac{3}{4} & 0 & 1 \end{pmatrix} \xrightarrow{\sim} \begin{pmatrix} 4 & 1 & -3 & 1 & 0 & 0 \\ 0 & -\frac{3}{2} & \frac{3}{2} & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & \frac{3}{2} & \frac{3}{2} & -\frac{1}{2} & 1 & 0 \\ 0 & 0 & \frac{9}{2} & -\frac{1}{2} & -\frac{1}{2} & 1 \end{pmatrix}$$

$$\sim \begin{pmatrix} 1 & \frac{1}{4} & -\frac{3}{4} & \frac{1}{4} & 0 & 0 \\ 0 & 1 & -1 & \frac{1}{3} & -\frac{2}{3} & 0 \\ 0 & 0 & 1 & -\frac{1}{9} & -\frac{1}{9} & \frac{2}{9} \end{pmatrix} \xrightarrow{L_2 \leftarrow L_2 + L_3} \begin{pmatrix} 1 & \frac{1}{4} & -\frac{3}{4} & \frac{1}{4} & 0 & 0 \\ 0 & 1 & 0 & \frac{2}{9} & -\frac{7}{9} & \frac{2}{9} \\ 0 & 0 & 1 & -\frac{1}{9} & -\frac{1}{9} & \frac{2}{9} \end{pmatrix}$$

Ainsi,
$$Q^{-1} = \frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 2 & -7 & 2 \\ -1 & -1 & 2 \end{pmatrix}$$
.

(c) On écrit T = D + N, avec $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{4} & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix}$ et $N = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \frac{3}{4} \\ 0 & 0 & 0 \end{pmatrix}$. On remarque que $DN = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & \frac{3}{4} \\ 0 & 0 & 0 \end{pmatrix}$

 $ND=rac{1}{16}\left(egin{array}{ccc} 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 3 \\ 0 & 0 & 0 \end{array}
ight)$, ainsi on peut appliquer la formule du binôme de Newton. De plus, $N^2=0$ (et, par récurrence immédiate, $N^k=0$ pour tout $k\geq 2$). Ainsi, pour tout $n\geq 1$,

$$T^n = (N+D)^n = \sum_{k=0}^n \binom{n}{k} N^k D^{n-k} = D^n + nND^{n-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4^{-n} & 3n4^{-n} \\ 0 & 0 & 4^{-n} \end{pmatrix}.$$

On remarque que l'expression reste valable si n = 0 ($T^0 = I_3$).

(d) D'après la formule de changement de base, on peut écrire $A=QTQ^{-1}$. Par ailleurs, par récurrence immédiate à partir de la question $\mathbf{Q1}(c)$, pour tout $n\in\mathbf{N},\,X_n=A^nX_0$. Ainsi, pour tout $n\in\mathbf{N},\,X_n=\left(QTQ^{-1}\right)^nX_0=QT^nQ^{-1}X_0$.

Q4. On réalise le calcul proposé à la question précédente :

$$X_{n} = (QTQ^{-1})^{n} X_{0} = QT^{n}Q^{-1}X_{0}$$

$$= \frac{1}{9 \cdot 4^{n}} \begin{pmatrix} 4 & 1 & -3 \\ 2 & -1 & 0 \\ 3 & 0 & 3 \end{pmatrix} \begin{pmatrix} 4^{n} & 0 & 0 \\ 0 & 1 & 3n \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 2 & -7 & 2 \\ -1 & -1 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$= \frac{1}{9 \cdot 4^{n}} \begin{pmatrix} 4 & 1 & -3 \\ 2 & -1 & 0 \\ 3 & 0 & 3 \end{pmatrix} \begin{pmatrix} 4^{n} & 0 & 0 \\ 0 & 1 & 3n \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$$

$$= \frac{1}{9 \cdot 4^{n}} \begin{pmatrix} 4 & 1 & -3 \\ 2 & -1 & 0 \\ 3 & 0 & 3 \end{pmatrix} \begin{pmatrix} 4^{n} \\ 2 - 3n \\ -1 \end{pmatrix} = \frac{1}{9 \cdot 4^{n}} \begin{pmatrix} 4^{n+1} + 2 - 3n + 3 \\ 2 \cdot 4^{n} - 2 + 3n \\ 3 \cdot 4^{n} - 3 \end{pmatrix}$$

$$= \frac{1}{9} \begin{pmatrix} 4 + (5 - 3n)4^{-n} \\ 2 + (3n - 2)4^{-n} \\ 3 - 3 \cdot 4^{-n} \end{pmatrix}$$

Ainsi, pour tout $n \in \mathbb{N}$,

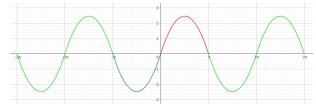
$$\begin{cases} v_n = \frac{1}{9}(4 + (5 - 3n)4^{-n}) \\ j_n = \frac{1}{9}(2 + (3n - 2)4^{-n}) \\ r_n = \frac{1}{9}(3 - 3 \cdot 4^{-n}) \end{cases}$$

(on peut remarquer à titre de vérification qu'on a toujours $v_n + j_n + r_n = 1$)

Q5. Lorsque n tend vers l'infini, les suites $(v_n)_{n \in \mathbb{N}}$, $(j_n)_{n \in \mathbb{N}}$ et $(r_n)_{n \in \mathbb{N}}$ ont pour limites respectives $v = \frac{4}{9}$, $j = \frac{2}{9}$ et $r = \frac{3}{9} = \frac{1}{3}$. On en déduit que le plus probable au bout d'un grand nombre de jours est d'avoir un drapeau vert, avec une probabilité de $\frac{4}{9}$ environ.

EXERCICE II

Q1. (a) La partie rouge correspond à la définition donnée sur $[0; \pi]$ $(x(\pi - x))$ est un polynôme du second degré avec un coefficient dominant négatif et dont les racines sont en 0 et en π), la partie verte est obtenue par (im)parité et la partie verte par périodicité.



(b) La fonction $t \mapsto t^2(\pi - t)^2$ est continue sur $[0; \pi]$.

$$\int_0^{\pi} t^2 (\pi - t)^2 dt = \int_0^{\pi} (\pi^2 t^2 - 2\pi t^3 + t^4) dt = \left[\frac{\pi^2}{3} t^3 - \frac{2\pi}{4} t^4 + \frac{1}{5} t^5 \right]_0^{\pi}$$
$$= \frac{\pi^5}{3} - \frac{\pi^5}{2} + \frac{\pi^5}{5} = \frac{\pi^5}{30}.$$

(c) Soit $n \in \mathbb{N}^*$. La fonction $t \mapsto t(\pi - t)$ est de classe \mathcal{C}^2 et $t \mapsto \sin(nt)$ est continue sur $[0; \pi]$. Par double intégration par parties,

$$\int_0^{\pi} t(\pi - t) \sin(nt) dt = \left[t(\pi - t) \frac{-\cos(nt)}{n} \right]_0^{\pi} - \int_0^{\pi} (\pi - 2t) \frac{-\cos(nt)}{n} dt$$

$$= 0 + \left[(\pi - 2t) \frac{\sin(nt)}{n^2} \right]_0^{\pi} - \int_0^{\pi} -2 \frac{\sin(nt)}{n^2} dt$$

$$= 0 + 2 \left[\frac{-\cos(nt)}{n^3} \right]_0^{\pi} = \frac{-2}{n^3} (\cos(n\pi) - \cos(0)) = \frac{2}{n^3} (1 - (-1)^n).$$

Q2. La fonction f étant impaire, tous ses coefficients de Fourier $a_n(f)$ $(n \in \mathbb{N})$ sont nuls et, pour tout $n \in \mathbb{N}^*$,

$$b_n(f) = \frac{2}{2\pi} \int_0^{2\pi} f(t) \sin(nt) dt = \frac{2}{\pi} \int_0^{\pi} f(t) \sin(nt) dt$$

D'après la question précédente, on a donc $b_n(f) = \frac{4}{\pi n^3} (1 - (-1)^n)$. Remarquons que ce coefficient est nul si n est pair et vaut $\frac{8}{\pi n^3}$ si n est impair. On peut donc écrire la série de Fourier de f sous la forme :

$$\sum_{n=1}^{+\infty} b_n(f) \sin(nt) = \frac{8}{\pi} \sum_{p=0}^{+\infty} \frac{\sin((2p+1)t)}{(2p+1)^3}.$$

Q3. La fonction f est 2π -périodique et \mathcal{C}^1 par morceaux ; de plus, elle est continue. D'après le théorème de Dirichlet, on en déduit que la série de Fourier de f converge vers f: pour tout $x \in \mathbf{R}$,

$$f(x) = \frac{8}{\pi} \sum_{p=0}^{+\infty} \frac{\sin((2p+1)t)}{(2p+1)^3}.$$

Q4. On applique l'égalité de la question précédente en $x = \frac{\pi}{2}$, en remarquant que $f(\frac{\pi}{2}) = \frac{\pi}{2}(\pi - \frac{\pi}{2}) = \frac{\pi^2}{4}$ car $\frac{\pi}{2} \in [0; \pi]$ et que, pour tout $p \in \mathbf{N}$, $\sin((2p+1)\frac{\pi}{2}) = (-1)^p$:

$$\frac{\pi^2}{4} = \frac{8}{\pi} \sum_{p=0}^{+\infty} \frac{(-1)^p}{(2p+1)^3},$$

d'où $R = \frac{\pi^3}{32}$.

 $\mathbf{Q5.}$ (a) Si f est une fonction continue par morceaux et T-périodique, alors :

$$\frac{1}{T} \int_0^T f^2(t) dt = a_0(f)^2 + \frac{1}{2} \sum_{n=1}^{+\infty} \left(a_n^2(f) + b_n^2(f) \right).$$

(b) On applique la formule de Parseval à la fonction f étudiée dans cet exercice. Remarquons que, f étant 2π -périodique et impaire, f^2 est paire donc $\int_0^{2\pi} f^2(t) \, \mathrm{d}t = 2 \int_0^{\pi} f^2(t) \, \mathrm{d}t$. Ainsi, d'après le calcul d'intégrale de $\mathbf{Q}\mathbf{1}$ et les coefficients calculés en $\mathbf{Q}\mathbf{2}$:

$$\frac{2}{2\pi} \cdot \frac{\pi^5}{30} = \frac{1}{2} \cdot \frac{64}{\pi^2} \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^6},$$

d'où $S = \frac{\pi^6}{960}$.

(c) On sépare la somme entre termes pairs et impairs :

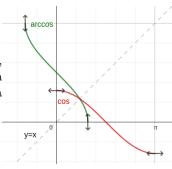
$$T = \sum_{n=1}^{+\infty} \frac{1}{n^6} = \sum_{p=1}^{+\infty} \frac{1}{(2p)^6} + \sum_{p=0}^{+\infty} \frac{1}{(2p+1)^6} = \frac{1}{64} \sum_{p=1}^{+\infty} \frac{1}{p^6} + S = \frac{T}{64} + S.$$

Ainsi,
$$T = \frac{64}{63}S = \frac{\pi^6}{945}$$
.

Problème

Partie A. Questions préliminaires.

La fonction arccos est strictement décroissante sur [-1;1], on a $\arccos(-1) = \pi$, $\arccos(0) = \frac{\pi}{2}$ et $\arccos(1) = 0$. La courbe admet des tangentes verticales en $x = \pm 1$ (où la fonction n'est pas dérivable).



- (b) $\cos(2x) = 2\cos^2(x) 1$.
- (c) On développe le membre de droite :

 $\cos(a+b) + \cos(a-b) = \cos a \cos b - \sin a \sin b + \cos a \cos b + \sin a \sin b = 2\cos a \cos b.$

(d) On utilise la formule d'addition, puis les formules de duplication du cosinus et du sinus :

$$\cos(3x) = \cos(2x + x) = \cos(2x)\cos x - \sin(2x)\sin x = (2\cos^2(x) - 1)\cos x - (2\sin x\cos x)\sin x$$
$$= 2\cos^3(x) - \cos x - 2\cos x\sin^2(x) = 2\cos^3(x) - \cos x - 2\cos x(1 - \cos^2(x))$$
$$= 4\cos^3(x) - 3\cos x.$$

Partie B. Un produit scalaire.

Q2. Soit $k \in \mathbb{N}$.

(a) Lorsque $t \to 1^ t^k \to 1$ donc $t^k \sim 1$. D'autre part, $\sqrt{1-t^2} = \sqrt{1-t}\sqrt{1+t}$ et $\sqrt{1+t} \to \sqrt{2}$ donc $\sqrt{1+t} \sim \sqrt{2}$. Par quotient, on a donc :

$$\frac{t^k}{\sqrt{1-t^2}} \sim \frac{1}{\sqrt{2}\sqrt{1-t}}.$$

La fonction $t\mapsto \frac{t^k}{\sqrt{1-t^2}}$ est continue et positive sur [0;1[, avec donc une unique impropreté en 1. En vertu de l'équivalent ci-dessus et du théorème de comparaison des intégrales de fonctions positives, l'intégrale est de même nature que $\int_0^1 \frac{\mathrm{d}t}{\sqrt{1-t}}$. Celle-ci, par théorème de changement de variable (en posant x=1-t, \mathcal{C}^1 strictement monotone) est de même nature que $\int_0^1 \frac{\mathrm{d}x}{\sqrt{x}}$, qui est une intégrale de référence convergente, d'où le résultat.

- (b) La fonction $t\mapsto \frac{t^k}{\sqrt{1-t^2}}$ est continue et positive sur]-1;1[. Intéressons-nous à l'intégrale $\int_{-1}^0 \frac{t^k}{\sqrt{1-t^2}} \, \mathrm{d}t$. On effectue le changement de variables x=-t, \mathcal{C}^1 et strictement monotone. On en déduit que cette intégrale est de même nature que $\int_0^1 \frac{(-1)^k x^k}{\sqrt{1-x^2}}$. Celle-ci est convergente d'après la question précédente. On en déduit que les deux intégrales $\int_{-1}^0 \frac{t^k}{\sqrt{1-t^2}} \, dt$ et $\int_0^1 \frac{t^k}{\sqrt{1-t^2}} \, \mathrm{d}t$ convergent, donc l'intégrale cherchée également.
- **Q3.** Il s'agit de montrer que φ est une forme bilinéaire symétrique définie positive. On a vu que φ est bien définie sur $\mathbf{R}[X]^2$ et à valeur réelles.
 - Pour tous $P,Q \in \mathbf{R}[X],$ on a $\varphi(Q,P) = \varphi(P,Q)$ par commutativité du produit.
 - Soient $P_1, P_2, Q \in \mathbf{R}[X]$ et $\lambda \in \mathbf{R}$. Alors, par linéarité de l'intégrale :

$$\varphi(\lambda P_1 + P_2, Q) = \int_{-1}^1 \frac{(\lambda P_1(t) + P_2(t))Q(t)}{\sqrt{1 - t^2}} dt = \lambda \int_{-1}^1 \frac{P_1(t)Q(t)}{\sqrt{1 - t^2}} dt + \int_{-1}^1 \frac{P_2(t)Q(t)}{\sqrt{1 - t^2}} dt$$
$$= \lambda \varphi(P_1, Q) + \varphi(P_2, Q).$$

On en déduit que φ est linéaire à gauche ; par symétrie, elle est donc bilinéaire.

• Soit $P \in \mathbf{R}[X]$. Alors :

$$\varphi(P, P) = \int_{-1}^{1} \frac{P^2(t)}{\sqrt{1 - t^2}} dt.$$

La fonction $t \mapsto \frac{P^2(t)}{\sqrt{1-t^2}}$ est positive sur [-1;1] et $-1 \le 1$ donc $\varphi(P,P) \ge 0$ par positivité de l'intégrale.

• Enfin, soit $P \in \mathbf{R}[X]$. Supposons que $\varphi(P,P) = 0$. La fonction $t \mapsto \frac{P^2(t)}{\sqrt{1-t^2}}$ est continue et positive sur]-1;1[. De plus, $-1 \neq 1$. On en déduit que $\frac{P^2(t)}{\sqrt{1-t^2}} = 0$ pour tout $t \in]-1;1[$; en particulier P(t) = 0 pour tout $t \in]-1;1[$. Le polynôme P possède une infinité de racines, il est donc nul.

Ainsi φ définit un produit scalaire sur $\mathbf{R}[X]$.

Partie C. Une famille de fonctions.

Q4. Soit $x \in [-1; 1]$. D'après **Q1** (b) et (d) :

$$f_0(x) = \cos(0) = 1;$$

 $f_1(x) = \cos(\arccos x) = x;$
 $f_2(x) = \cos(2\arccos x) = 2\cos^2(\arccos x) - 1 = 2x^2 - 1;$
 $f_3(x) = \cos(3\arccos x) = 4\cos^3(\arccos x) - 3\cos(\arccos x) = 4x^3 - 3x.$

Q5. Soient $n \in \mathbb{N}^*$ et $x \in [-1; 1]$. Alors, d'après **Q1** (c) :

$$2xf_n(x) = 2\cos(\arccos x)\cos(n\arccos x)$$
$$= \cos(n\arccos x + \arccos x) + \cos(n\arccos x - \arccos x)$$
$$= f_{n+1}(x) + f_{n-1}(x).$$

Q6. On peut conjecturer, d'après la relation de récurrence, que T_n est de coefficient dominant 2^{n-1} pour tout $n \in \mathbb{N}^*$. Montrons donc par récurrence double sur n que T_n est de degré n et de coefficient dominant 2^{n-1} pour tout $n \in \mathbb{N}^*$.

Pour n = 1, $T_1 = X$ qui est bien de degré 1 et de coefficient dominant $2^{1-1} = 1$.

Pour $n=2, T_2=2XT_1-T_0=2X^2-1$, qui est bien de degré 2 et de coefficient dominant $2^{2-1}=2$.

Soit $n \in \mathbb{N}^*$. On suppose que T_n (resp. T_{n+1}) est de degré n (resp. n+1) et de coefficient dominant 2^{n-1} (resp. 2^n). Alors $2XT_{n+1}$ est de degré $1 + \deg(T_{n+1}) = n+2$ et de coefficient dominant $2\operatorname{cd}(T_{n+1}) = 2^{n+1}$. Ainsi, $T_{n+2} = 2XT_{n+1} - T_n$ est de degré n+2 et de de coefficient dominant 2^{n+1} (une somme de polynômes de degrés différents est de degré et de coefficient dominant égaux à ceux du terme de plus haut degré).

On a ainsi prouvé que T_n est de degré n et de coefficient dominant 2^{n-1} pour tout $n \in \mathbf{N}^*$.

- **Q7.** Remarquons que T_0 est de degré 0 (mais pas de coefficient dominant 2^{0-1}). Pour tout $n \in \mathbb{N}$, d'après la question précédente, la famille (T_0, \ldots, T_n) est échelonnée en degrés, elle est donc libre. De plus, elle est composée de n+1 polynômes de $\mathbf{R}_n[X]$ qui est de dimension n+1; c'est donc une base de $\mathbf{R}_n[X]$.
- **Q8.** On procède une nouvelle fois par récurrence double sur $n \in \mathbb{N}$.

D'après la question **Q4** et par définition de T_0 et T_1 , on a bien $f_0(x) = T_0(x)$ et $f_1(x) = T_1(x)$ pour tout $x \in [-1, 1]$.

Soit maintenant $n \in \mathbf{N}$. On suppose que $T_n(x) = f_n(x)$ et $T_{n+1}(x) = f_{n+1}(x)$ pour tout $x \in [-1; 1]$. Alors, pour tout $x \in [-1; 1]$, d'après $\mathbf{Q5}$,

$$f_{n+2}(x) = 2xf_{n+1}(x) - f_n(x)$$

= $2xT_{n+1}(x) - T_n(x)$ par hypothèse de récurrence
= $T_{n+2}(x)$ par définition de T_{n+2} .

Partie D. Une base orthogonale.

Q9. (a) Soient $p \neq q \in \mathbb{N}$. Notons qu'alors p + q et p - q sont tous les deux non nuls. Alors, d'après **Q1** (c),

$$I_{p,q} = \int_0^{\pi} \cos(px) \cos(qx) dx = \frac{1}{2} \int_0^{\pi} (\cos((p+q)x) + \cos((p-q)x)) dx$$
$$= \frac{1}{2} \left[\frac{\sin((p+q)x)}{p+q} + \frac{\sin((p-q)x)}{p-q} \right]_0^{\pi} = 0.$$

En effet, $\sin(0) = \sin((p+q)\pi) = \sin((p-q)\pi) = 0$ car p+q et p-q sont entiers.

(b) Si p=0,alors $I_{p,p}=\int_0^\pi 1\,\mathrm{d}t=\pi.$ Si $p\neq 0,$ alors :

$$I_{p,p} = \int_0^{\pi} \cos^2(px) \, dx = \frac{1}{2} \int_0^{\pi} (\cos(2px) + 1) \, dx = \frac{1}{2} \left(\left[\frac{\sin(2px)}{2p} \right]_0^{\pi} + \pi \right) = \frac{\pi}{2}.$$

Q10. Soient $m \neq n \in \mathbb{N}$. Remarquons que, pour tout $t \in [0; \pi]$, $T_m(\cos t) = f_m(\cos t) = \cos(m \arccos(\cos t)) = \cos(mt)$.

Faisons alors le changement de variables $t = \arccos x$ ($\mathrm{d}t = \frac{-\mathrm{d}x}{\sqrt{1-x^2}}$), de classe \mathcal{C}^1 et strictement décroissant sur]-1;1[:

$$\langle T_m | T_n \rangle = \int_{-1}^1 \frac{T_m(x)T_n(x)}{\sqrt{1-x^2}} dx = \int_{\pi}^{-\pi} T_m(\cos t)T_n(\cos t) - dt$$

= $\int_{-\pi}^{\pi} \cos(mt)\cos(nt) dt = I_{m,n} = 0 \text{ car } m \neq n.$

Ainsi la famille (T_0,\ldots,T_n) est orthogonale. En revanche elle n'est pas orthonormée car (de même que ci-dessus) $\|T_0\|^2=\langle T_0\mid T_0\rangle=I_{0,0}=\pi\neq 1$.

- **Q11.** D'après **Q7**, $\mathbf{R}_{n-1}[X] = \mathrm{Vect}(T_0, \dots, T_{n-1})$. La famille (T_0, \dots, T_n) étant orthogonale, T_n est orthogonal à T_0, \dots, T_{n-1} donc à tout le sous-espace qu'ils engendrent, autrement dit à $\mathbf{R}_{n-1}[X]$.
- **Q12.** La base (T_0, \ldots, T_n) étant orthogonale, la base $(\frac{T_0}{\|T_0\|}, \ldots, \frac{T_n}{\|T_n\|})$ est orthonormée. Comme $X^n \in \mathbf{R}_n[X] = \mathrm{Vect}(T_0, \ldots, T_n)$, on peut donc écrire :

$$X^{n} = \sum_{k=0}^{n} \langle X^{n} \mid \frac{T_{k}}{\|T_{k}\|} \rangle \cdot \frac{T_{k}}{\|T_{k}\|} = \sum_{k=0}^{n} \frac{1}{\|T_{k}\|^{2}} \langle X^{n} \mid T_{k} \rangle \cdot T_{k}$$

On a montré que T_n est de degré n et de coefficient dominant 2^{n-1} . Ainsi, $T_n - 2^{n-1}X^n$ annule exactement le terme de degré n; il est donc de degré au plus n-1, donc orthogonal à T_n . Autrement dit, $\langle T_n - 2^{n-1}X^n | T_n \rangle = 0$.

Par linéarité à gauche, on en déduit que : $||T_n||^2 - 2^{n-1}\langle X^n \mid T_n \rangle = 0$, soit :

$$\langle X^n, T_n \rangle = \frac{\|T_n\|^2}{2^{n-1}}.$$

Partie E. Minimiser une intégrale à paramètres.

- **Q13.** D'après le théorème de la projection (car $\mathbf{R}_1[X]$ est de dimension finie), $I = ||X^2 p(X^2)||^2 = ||X^2||^2 ||p(X^2)||^2$.
- **Q14.** D'après les questions **Q9** et **Q10**, une base orthonormée de $\mathbf{R}_1[X]$ et donnée par $(\frac{T_0}{\|T_0\|}, \frac{T_1}{\|T_1\|}) = (\frac{1}{\sqrt{\pi}}, \sqrt{\frac{2}{\pi}}X)$
- **Q15.** On a montré que $T_2 = 2X^2 1$, donc $X^2 = \frac{1}{2}T_2 + \frac{1}{2} = \frac{1}{2}T_2 + \frac{1}{2}T_0$. Ainsi, en utilisant la base orthonormée de la question précédente :

$$\begin{split} p(X^2) &= \langle X^2 \mid T_0 \rangle \frac{T_0}{\|T_0\|^2} + \langle X^2 \mid T_1 \rangle \frac{T_1}{\|T_1\|^2} \\ &= \frac{1}{2} \langle T_0 \mid T_0 \rangle \frac{T_0}{\|T_0\|^2} + \frac{1}{2} \langle T_2 \mid T_0 \rangle \frac{T_0}{\|T_0\|^2} + \frac{1}{2} \langle T_0 \mid T_1 \rangle \frac{T_1}{\|T_1\|^2} + \frac{1}{2} \langle T_2 \mid T_1 \rangle \frac{T_1}{\|T_1\|^2} \\ &= \frac{1}{2} T_0 + 0 + 0 + 0 = \frac{1}{2}, \end{split}$$

par orthogonalité de la famille (T_0, T_1, T_2) .

Q16. D'après les questions précédentes, on a donc :

$$I = \left\| X^2 - \frac{1}{2} \right\|^2 = \left\| \frac{1}{2} T_2 + \frac{1}{2} - \frac{1}{2} \right\|^2 = \frac{1}{4} \|T_2\|^2 = \frac{\pi}{8}.$$