Problème I. Séries et probabilités

I.A. Calcul de la somme d'une série.

Q1. On calcule la limite du quotient lorsque n tend vers l'infini :

$$\frac{\binom{n+1}{k}}{\binom{n}{k}} = \frac{(n+1)!}{k!(n+1-k)!} \frac{k!(n-k)!}{n!} = \frac{n+1}{n+1-k} \sim \frac{n}{n} \longrightarrow 1$$

Q2. Soit $x \neq 0$. Pour tout $n \geq k$, $\binom{n}{k} > 0$ donc

$$\frac{\binom{n+1}{k}|x|^{n+1}}{\binom{n}{k}|x|^k} \longrightarrow |x|.$$

D'après la règle de d'Alembert, la série entière est donc absolument convergente si |x| < 1 et grossièrement divergente si |x| > 1. On en déduit qu'elle est de rayon 1.

- **Q3.** Il s'agit d'étudier la série $\sum {n \choose 0} x^n$, autrement dit $\sum x^n$. C'est une série entière de rayon 1 et, pour tout $x \in]-1; 1[$, $S_0(x) = \frac{1}{1-x}$.
- **Q4.** Remarquons que $\frac{1}{(1-x)^2}$ est la dérivée de $S_0(x)$. Par théorème de dérivation terme à terme, pour tout $x \in]-1;1[$, on a :

$$S_0'(x) = \sum_{n=1}^{+\infty} nx^{n-1} = \sum_{n=1}^{+\infty} \binom{n}{1} x^{n-1}.$$

Par multiplication terme à terme par x, on reconnaît bien $\frac{x}{(1-x)^2} = xS_0'(x) = S_1(x)$.

Q5. Soient $n, k \in \mathbb{N}$ avec n < k. On a :

$$\binom{n}{k} + \binom{n}{k+1} = \frac{n!}{k!(n-k)!} + \frac{n!}{(k+1)!(n-1-k)!} = \frac{(k+1)n! + (n-k)n!}{(k+1)!(n-k)!}$$
$$= \frac{(n+1)n!}{(k+1)!(n-k)!} = \frac{(n+1)!}{(k+1)!(n+1-(k+1))!} = \binom{n+1}{k+1}.$$

Q6. Soient $k \in \mathbb{N}$ et $x \in]-1;1[$. Alors :

$$xS_{k}(x) + xS_{k+1}(x) = \sum_{n=k}^{+\infty} \binom{n}{k} x^{n+1} + \sum_{n=k+1}^{+\infty} \binom{n}{k+1} x^{n+1}$$

$$= \binom{k}{k} x^{k+1} + \sum_{n=k+1}^{+\infty} \left(\binom{n}{k} + \binom{n}{k+1} \right) x^{n+1}$$

$$= x^{k+1} + \sum_{n=k+1}^{+\infty} \binom{n+1}{k+1} x^{n+1}$$

$$= \binom{k+1}{k+1} x^{k+1} + \sum_{n'=k+2}^{+\infty} \binom{n'}{k+1} x^{n'}$$

$$= \sum_{n=k+1}^{+\infty} \binom{n}{k+1} x^{n}.$$
1

Q7. On procède par récurrence sur $k \in \mathbb{N}$. La proposition est vraie pour k = 0 d'après **Q3**. Soit donc $k \in \mathbb{N}$, supposons que $S_k(x) = \frac{x^k}{(1-x)^{k+1}}$ pour tout $x \in]-1; 1[$. Alors, d'après la question précédente, pour tout $x \in]-1; 1[$:

$$S_{k+1}(x) = \frac{x}{1-x} S_k(x) = \frac{x}{1-x} \frac{x^k}{(1-x)^{k+1}} = \frac{x^{k+1}}{(1-x)^{k+2}},$$

ce qui démontre l'égalité souhaitée par principe de récurrence.

I.B. Étude d'une expérience aléatoire.

- **Q8.** N est égale au rang d'apparition du premier succès dans la répétition indépendante d'une épreuve de Bernoulli de paramètre $\frac{1}{6}$; on a donc $N \sim \mathcal{G}(\frac{1}{6})$.
- Q9. Par définition, sous réserve de convergence absolue :

$$\mathbf{E}(N) = \sum_{n=1}^{+\infty} n\mathbf{P}(X=n) = \sum_{n=1}^{+\infty} n\left(\frac{5}{6}\right)^{n-1} \frac{1}{6} = \frac{1}{5} \sum_{n=1}^{+\infty} n\left(\frac{5}{6}\right)^{n}.$$

En remarquant que $n = \binom{n}{1}$, on reconnaît l'expression de $S_1(\frac{5}{6})$, ce qui prouve la convergence absolue (car $\frac{5}{6} \in]-1;1[$) et la valeur $\mathbf{E}(N) = \frac{1}{5} \frac{5/6}{(1/6)^2} = 6$.

De même, par formule de transfert,

$$\mathbf{E}(N^2) = \frac{1}{5} \sum_{n=1}^{+\infty} n^2 \left(\frac{5}{6}\right)^n = \frac{1}{5} \sum_{n=1}^{+\infty} (n(n-1) + n) \left(\frac{5}{6}\right)^n = \frac{2}{5} S_2 \left(\frac{5}{6}\right) + \frac{1}{5} S_1 \left(\frac{5}{6}\right),$$

d'où la convergence et la valeur $\mathbf{E}(N^2) = \frac{2}{5} \frac{(5/6)^2}{(1/6)^3} + \frac{1}{5} \frac{5/6}{(1/6)^2} = 60 + 6 = 66.$

Enfin,
$$\mathbf{V}(N) = \mathbf{E}(N^2) - \mathbf{E}(N)^2 = 66 - 6^2 = 30.$$

Q10. On reconnaît une somme géométrique de raison $\frac{5}{6}$:

$$\mathbf{P}(N \le n) = \sum_{k=1}^{n} \mathbf{P}(N = k) = \sum_{k=1}^{n} \left(\frac{5}{6}\right)^{k-1} \frac{1}{6} = \frac{1}{6} \frac{(5/6) - (5/6)^{n+1}}{1 - (5/6)} = \frac{5}{6} \left(1 - \left(\frac{5}{6}\right)^{n}\right).$$

Q11. La variable X est égale au nombre de faces blanches obtenues sur une série de n lancers, n étant la valeur de N. Par définition, il est impossible que la valeur de X soit supérieure à celle de N. On a donc $\mathbf{P}_{(N=n)}(X=k)=0$ si k>n.

Au contraire, si $k \leq n$, il s'agit de calculer la probabilité d'obtenir k succès lors de la répétition n fois de manière indépendante d'une même épreuve de Bernoulli de paramètre $\frac{1}{6}$; on reconnaît une loi binomiale. Ainsi

$$\mathbf{P}_{(N=n)}(X=k) = \binom{n}{k} \left(\frac{1}{6}\right)^k \left(\frac{5}{6}\right)^{n-k}.$$

Q12. Les événements $(N=n)_{n\in\mathbb{N}^*}$ forment un système complet. D'après la formule des probabilités totales, puis la question précédente (on est toujours dans le cas $k=0\leq n$):

$$P(X=0) = \sum_{n=1}^{+\infty} \times \mathbf{P}_{(N=n)}(X=0)\mathbf{P}(N=n) = \sum_{n=1}^{+\infty} \binom{n}{0} \left(\frac{1}{6}\right)^0 \left(\frac{5}{6}\right)^n \left(\frac{5}{6}\right)^{n-1} \frac{1}{6}$$
$$= \frac{1}{6} \sum_{n=1}^{+\infty} \left(\frac{5}{6}\right)^{2n-1} = \frac{1}{6} \frac{5/6}{1 - (5/6)^2} = \frac{5}{36} \frac{36}{11} = \frac{5}{11}.$$

De même pour $k \geq 1$, en prenant garde que les termes d'indice n < k dans la somme sont nuls (toujours d'après $\mathbf{Q11}$):

$$\mathbf{P}(X=k) = \sum_{n=k}^{+\infty} \binom{n}{k} \left(\frac{1}{6}\right)^{k+1} \left(\frac{5}{6}\right)^{2n-1-k} = \frac{1}{5^{k+1}} S_k \left(\left(\frac{5}{6}\right)^2\right)$$
$$= \frac{1}{5^{k+1}} \frac{(5/6)^{2k}}{(1-(5/6)^2)^{k+1}} = \frac{5^{k-1}}{6^{2k}} \left(\frac{36}{11}\right)^{k+1} = \left(\frac{5}{11}\right)^k \frac{36}{11 \times 5}.$$

Q13. On a $X(\Omega) = \mathbf{N}$. Il s'agit de calculer la somme d'une série géométrique de raison $\frac{5}{11} \in]-1;1[$ (donc convergente) :

$$\sum_{n=1}^{+\infty} \mathbf{P}(X=k) = \frac{36}{55} \frac{5/11}{1 - (5/11)} = \frac{36}{55} \times \frac{5}{6} = \frac{6}{11}.$$

Ainsi, en ajoutant $\mathbf{P}(X=0) = \frac{5}{11}$, on trouve $\frac{11}{11} = 1$.

Q14. Sous réserve de convergence absolue.

$$\mathbf{E}(X) = \sum_{k=0}^{+\infty} k \mathbf{P}(X = k) = \frac{36}{55} \sum_{k=1}^{+\infty} k \left(\frac{5}{11}\right)^k = \frac{36}{55} S_1 \left(\frac{5}{11}\right) = \frac{36 \times 5/11}{55 \times (6/11)^2} = 1,$$

la convergence absolue étant a posteriori vérifiée puisque $\frac{5}{11} \in]-1;1[$, c'est-à-dire à l'intérieur du disque ouvert de convergence de la série entière S_1 .

Q15. D'après la formule de transfert, sous réserve de convergence absolue :

$$\mathbf{E}(X(X-1)) = \sum_{k=0}^{+\infty} k(k-1)\mathbf{P}(X=k) = \frac{36}{55} \sum_{k=2}^{+\infty} k(k-1) \left(\frac{5}{11}\right)^k$$
$$= \frac{36}{55} 2S_2 \left(\frac{5}{11}\right) = \frac{36 \times 2 \times (5/11)^2}{55 \times (6/11)^3} = \frac{5}{3},$$

la convergence absolue étant de nouveau justifiée par le fait que $\frac{5}{11} \in]-1;1[$.

Q16. D'après les deux questions précédentes, X et X(X-1) sont d'espérance finie donc, par linéarité de l'espérance, $X^2 = X(X-1) + X$ est d'espérance finie, avec $\mathbf{E}(X^2) = \mathbf{E}(X(X-1)) + \mathbf{E}(X) = \frac{8}{3}$. On en déduit que X possède une variance et $\mathbf{V}(X) = \mathbf{E}(X^2) - \mathbf{E}(X)^2 = \frac{8}{3} - 1 = \frac{5}{3}$.

Problème II. Séries de Fourier et équation de la chaleur

Q17. Supposons F paire. Alors, pour tout $n \in \mathbb{N}^*$, d'après la relation de Chasles :

$$\int_{-1}^{1} f(t) \sin(n\pi t) dt = \int_{-1}^{0} F(t) \sin(n\pi t) dt + \int_{0}^{1} F(t) \sin(n\pi t) dt$$

On fait dans la première intégrale le changement de variables u=-t, puis on utilise la parité de F et l'imparité de la fonction $t\mapsto \sin(n\pi t)$:

$$\int_{-1}^{1} f(t) \sin(n\pi t) dt = \int_{1}^{0} F(-u) \sin(-n\pi u) (-du) + \int_{0}^{1} F(t) \sin(n\pi t) dt$$

$$= \int_{0}^{1} F(-u) \sin(-n\pi u) du + \int_{0}^{1} F(t) \sin(n\pi t) dt$$

$$= \int_{0}^{1} F(u) (-\sin(n\pi u)) du + \int_{0}^{1} F(t) \sin(n\pi t) dt$$

$$= 0$$

De même, si F est impaire, alors, pour tout $n \in \mathbb{N}$, $a_n(F) = 0$.

- **Q18.** Supposons F paire. Alors, pour tout $x \in \mathbf{R}$, F(-x) = F(x). On dérive des deux côtés de l'égalité à l'aide de la formule de dérivation des composées : pour tout $x \in \mathbf{R}$, -F'(-x) = F'(x), ce qui montre que F' est impaire.
- **Q19.** La fonction F étant 2-périodique,

$$a_0(F') = \frac{1}{2} \int_{-1}^{1} F'(t) dt = \frac{1}{2} [F(t)]_{-1}^{1} = \frac{1}{2} (F(1) - F(-1)) = 0$$

Soit $n \in \mathbf{N}^*$. La fonction F' étant continue et la fonction $t \mapsto \cos(n\pi t) \, \mathcal{C}^1$, on a :

$$a_n(F') = \int_{-1}^{1} \widetilde{F'(t)} \underbrace{\cos(n\pi t)}_{-1} dt$$

$$= \left[F(t) \cos(n\pi t) \right]_{-1}^{1} - \int_{-1}^{1} F(t) (-n\pi \sin(n\pi t)) dt$$

$$= 0 + n\pi b_n(F),$$

le crochet étant nul car les deux fonctions F et $t \mapsto \cos(n\pi t)$ sont 2-périodiques donc prennent la même valeur en 1 et -1.

On en déduit de même $b_n(F') = -n\pi a_n(F)$, le changement de signe provenant du fait que sin' = $+\cos$, ce qui fait que le signe moins donné par la formule d'intégration par parties n'est pas compensé (contrairement au calcul ci-dessus).

Q20. Pour tout $n \in \mathbb{N}^*$, on a :

$$0 \le n^2(a_n(F))^2 \le n^2((a_n(F))^2 + (b_n(F))^2) = \frac{1}{\pi^2}((a_n(F'))^2 + (b_n(F'))^2)$$

Or la série de terme général $((a_n(F'))^2 + (b_n(F'))^2)$ est convergente en vertu du théorème de Parseval (la fonction F' étant continue par morceaux et périodique). Par théorème de comparaison des séries à termes positifs, on en déduit que la série de terme général $n^2(a_n(F))^2$ converge. De même pour la série $\sum n^2(b_n(F))^2$.

 $\mathbf{Q21}$. On applique trois fois les formules de $\mathbf{Q3}$:

$$\begin{cases} a_0(F^{(3)}) = 0 \\ \forall n \in \mathbf{N}^* \quad a_n(F^{(3)}) = -n^3 \pi^3 b_n(F) \text{ et } b_n(F^{(3)}) = n^3 \pi^3 a_n(F). \end{cases}$$

La fonction F étant impaire, on sait de plus que $a_n(F) = 0$ pour tout $n \in \mathbb{N}$. On a donc, pour tout $n \in \mathbb{N}^*$, $b_n(F^{(3)}) = 0$.

- **Q22.** De la même manière qu'à la question **Q4**, il suffit d'appliquer la formule de Parseval à la fonction $F^{(3)}$ (périodique et continue par morceaux).
- **Q23.** Pour tous $a, b \in \mathbf{R}$, $(|a| |b|)^2 \ge 0$, autrement dit $2|ab| \le a^2 + b^2$, d'où le résultat.
- **Q24.** Pour tout $n \in \mathbb{N}^*$, il suffit d'appliquer l'inégalité ci-dessus à $a = n^3 b_n(F)$ et $b = \frac{1}{n}$.
- **Q25.** D'après **Q6**, la série de terme général $n^6(b_n(F)^2)$ est convergente. La série de terme général $\frac{1}{n^2}$ l'est également (série de Riemann d'exposant 2>1). Par théorème de comparaison des séries à termes positifs, l'inégalité démontrée à la question précédente implique que la série $\sum n^2 |b_n(F)|$ est convergente; autrement dit, la série $\sum n^2 b_n(F)$ est absolument convergente, donc convergente.
- **Q26.** Il existe une unique manière de prolonger la fonction f sur [-1;1] par imparité (en posant F(x) = -f(-x) pour tout $x \in [-1;0]$, ce qui est possible car f(0) = 0). On obtient ainsi une fonction définie sur un intervalle de longueur 2, qui peut donc être prolongée de manière unique en une fonction 2-périodique sur \mathbf{R} . Notons que le prolongement est possible sans conflit de définition puisqu'on a f(0) = f(1) = 0 donc la fonction est nulle à l'endroit de tous les raccordements.

- **Q27.** On commence par construire l'image de la courbe de f par la symétrie de centre l'origine du repère, puis on construit l'image de la courbe ainsi obtenue par toutes les translations de vecteurs (2n,0), $n \in \mathbb{N}^*$.
- **Q28.** Au point 0, la courbe représentative de F admet deux demi-tangentes à gauche et à droite, notons \vec{u} et \vec{v} leurs vecteurs directeurs respectifs. Par construction, \vec{u} est l'image de \vec{v} par la symétrie de centre O, en particulier \vec{u} et \vec{v} sont colinéaires. Les deux demi-tangentes sont donc parallèles, de plus elles passent toutes les deux par le point (0,0), elles sont donc confondues; ainsi la courbe représentative de F possède une tangente en 0. Son coefficient directeur est donné par f'(0).

Au point 1, avec les mêmes notations, le vecteur \vec{v} est (par périodicité) aussi égal au vecteur directeur de la demi-tangente à droite en -1. La symétrie de centre O envoie donc ce vecteur sur \vec{u} , et on conclut de la même manière. De même en -1. Les tangentes en 1 et -1 ont toutes les deux pour coefficient directeur f'(1).

- **Q29.** D'après les conditions initiales, on a u(t,0) = u(t,1) = 0 pour tout $t \ge 0$. En dérivant par rapport à t, on en déduit l'égalité demandée.
- **Q30.** D'après l'équation (1) et la question précédente, pour tout $t \in \mathbf{R}$, $\frac{\partial^2 u}{\partial x^2}(t,1) = \frac{\partial^2 u}{\partial x^2}(t,0) = 0$. Par ailleurs, en dérivant deux fois les conditions initiales, on voit que $f''(x) = \frac{\partial^2 u}{\partial x^2}(0,x)$ pour tout $x \in [0;1]$. En combinant ces deux égalités (pour t=0 et $x \in \{0;1\}$), on a donc f''(0) = f''(1) = 0.
- Q31. On vérifie que f satisfait toutes les hypothèses de la partie II : f est \mathcal{C}^3 donc \mathcal{C}^1 et f(0) = f(1) = 0. On peut donc la prolonger de manière unique en une fonction impaire et 2-périodique. De plus f''(0) = f''(1) = 0, le prolongement est donc de classe \mathcal{C}^3 .
- Q32. On procède comme à la question précédente : g_t est de classe \mathcal{C}^3 (comme restriction de u) et vérifie $g_t(0) = g_t(1) = 0$. Comme aux questions précédentes, on a $g_t''(0) = \frac{\partial^2 u}{\partial x^2}(t,0) = \frac{\partial u}{\partial t}(t,0) = 0$ et de même $g_t''(1) = 0$.
- Q33. La fonction G_t est de classe \mathcal{C}^1 (donc en particulier continue et \mathcal{C}^1 par morceaux) et 2-périodique; en vertu du théorème de Dirichlet, elle est égale à sa série de Fourier. De plus, s'agissant d'une fonction impaire, tous les coefficients $a_n(G_t)$ sont nuls; on peut donc écrire, pour tout $x \in \mathbf{R}$,

$$G_t(x) = \sum_{n=1}^{+\infty} \beta_n(t) \sin(n\pi x),$$

où
$$\beta_n(t) = b_n(G_t)$$
.

Q34. Remarquons que $g_0 = f$ par défintion, donc $G_0 = F$ par unicité des prolongements. D'après la question précédente, on a donc :

$$\beta_n(0) = b_n(G_0) = b_n(F) = \int_{-1}^1 F(t) \sin(n\pi t) dt.$$

Q35. La fonction G_t'' est de classe \mathcal{C}^1 (puisque G_t est \mathcal{C}^3), en particulier elle est continue et \mathcal{C}^1 par morceaux donc égale à sa série de Fourier d'après le théorème de Dirichlet :

pour tout $x \in \mathbf{R}$,

$$G''_t(x) = a_0(G''_t) + \sum_{n=1}^{+\infty} (a_n(G''_t)\cos(n\pi x) + b_n(G''_t)\sin(n\pi x))$$

$$= -n^2 \pi^2 \sum_{n=1}^{+\infty} (a_n(G_t)\cos(n\pi x) + b_n(G_t)\sin(n\pi x)) \text{ d'après } \mathbf{Q3}$$

$$= -n^2 \pi^2 \sum_{n=1}^{+\infty} \beta_n(t)\sin(n\pi x) \text{ car } G_t \text{ impaire.}$$

- **Q36.** Si $(t,x) \in \Delta$, alors U(t,x) = u(t,x); l'égalité demandée est alors simplement la réécriture de l'équation (1) avec la formule de la question **Q19**.
- **Q37.** C'est une équation linéaire homogène du premier ordre à coefficients constants, ses solutions sont les fonctions $t \mapsto \lambda e^{-n^2\pi^2 t}$, $\lambda \in \mathbf{R}$.
- **Q38.** D'après les deux questions précédentes, pour tout $n \in \mathbb{N}$, il existe $\lambda_n \in \mathbb{R}$ tel que $\beta_n(t) = \lambda_n e^{-n^2\pi^2t}$. La question **Q18** donne la condition initiale $\beta_n(0) = b_n(F)$, on en déduit que $\lambda_n = b_n(F)$, autrement dit $\beta_n(t) = b_n(F)e^{-n^2\pi^2t}$. Par définition des coefficients β_n , on a donc, pour tous $(t, x) \in \Delta$:

$$u(t,x) = G_t(x) = \sum_{n=1}^{+\infty} b_n(F)e^{-n^2\pi^2t}\sin(n\pi x).$$