2024-25

TSI2 **Épreuve orale CCINP**Avec préparation (30 minutes)

Avec préparation (30 minutes)

On considère la matrice réelle M suivante :

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

- (1) (a) Calculer M^2 .
 - (b) Calculer M^3 .
- (2) Établir une relation entre M, M^2 et M^3 .
- (3) On considère le polynôme $P = X^3 X^2 2X$. Déterminer les racines de P.
- (4) (a) Soit $n \in \mathbb{N}^*$. Écrire la relation de division euclidienne de X^n par P; on notera R_n le reste de la division euclidienne du polynôme X^n par P. Le degré de R_n devra être précisé.
 - (b) Évaluer l'expression précédente en 0, -1 et 2.
- (5) Déduire de ce qui précède la valeur de M^n pour $n \in \mathbf{N}^*$.
- (6) On considère des suites réelles (a_n) , (b_n) et (c_n) définies par $a_0 = b_0 = c_0 = 1$ et

$$\forall n \in \mathbf{N} \quad \begin{cases} a_{n+1} = a_n + b_n + c_n \\ b_{n+1} = a_n \\ c_{n+1} = a_n \end{cases}$$

- (a) Écrire une fonction en Python prenant en paramètre un entier n et renvoyant les valeurs a_n , b_n et c_n .
- (b) Donner une expression de a_n en fonction de $n \in \mathbb{N}$.

On considère la matrice réelle M suivante :

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

2024-25

- (1) (a) Calculer M^2 .
 - (b) Calculer M^3 .
- (2) Établir une relation entre M, M^2 et M^3 .
- (3) On considère le polynôme $P = X^3 X^2 2X$. Déterminer les racines de P.
- (4) (a) Soit $n \in \mathbb{N}^*$. Écrire la relation de division euclidienne de X^n par P; on notera R_n le reste de la division euclidienne du polynôme X^n par P. Le degré de R_n devra être précisé.
 - (b) Évaluer l'expression précédente en 0, -1 et 2.
- (5) Déduire de ce qui précède la valeur de M^n pour $n \in \mathbf{N}^*$.
- (6) On considère des suites réelles (a_n) , (b_n) et (c_n) définies par $a_0 = b_0 = c_0 = 1$ et

$$\forall n \in \mathbf{N} \quad \begin{cases} a_{n+1} = a_n + b_n + c_n \\ b_{n+1} = a_n \\ c_{n+1} = a_n \end{cases}$$

- (a) Écrire une fonction en Python prenant en paramètre un entier n et renvoyant les valeurs a_n , b_n et c_n .
- (b) Donner une expression de a_n en fonction de $n \in \mathbb{N}$.