1. On considère les deux équations différentielles suivantes :

(H):
$$2xy' - 3y = 0$$
 et (E): $2xy' - 3y = \sqrt{x}$.

- (1) (a) Justifier, sans les déterminer, que (H) admet des solutions sur $]0; +\infty[$.
 - (b) Que doit-on rajouter comme donnée pour avoir une unique solution?
- (2) Dans cette question, on cherche à déterminer une valeur approchée de la solution y de (H) avec la condition initiale y(1) = 1 sur l'intervalle [a; b] = [1; 2].
 - (a) Expliquer la méthode d'Euler.
 - (b) Écrire en Python une fonction **euler** prenant en entrée un paramètre n (permettant de fixer le pas $h = \frac{b-a}{n} = \frac{1}{n}$) qui donne une approximation de la solution de l'équation (H). La fonction doit renvoyer deux listes : la liste X des x_k et la liste Y des $f(x_k)$. On pourra utiliser la relation

$$y_{k+1} = \left(\frac{3h}{2x_k} + 1\right) y_k.$$

- (3) Résoudre l'équation (H) sur l'intervalle $]0; +\infty[$.
- (4) Résoudre l'équation (E) sur l'intervalle $[0; +\infty[$.
- **2.** Pour tout $t \in \mathbf{R}_+$, on considère la fonction g_t définie sur \mathbf{R}_+ par $g_t(x) = x^3 + tx 1$.
 - (1) Soit $t \in \mathbf{R}_+$.
 - (a) Dresser le tableau de variations de la fonction g_t .
 - (b) Justifier qu'il existe un unique $u(t) \in \mathbf{R}_+$ tel que $g_t(u(t)) = 0$.
 - (c) Écrire une fonction en Python prenant en entrée le paramètre t et renvoyant une valeur approchée de u(t).
 - (2) (a) Soient $0 \le t \le t'$. Soit $x \in \mathbf{R}_+$. Comparer $g_t(x)$ à $g_{t'}(x)$; en déduire que u est décroissante.
 - (b) Justifier que la fonction u possède une limite finie ℓ en $+\infty$.
 - (c) Montrer que, pour tout $t \in \mathbf{R}_+$, $tu(t) = 1 (u(t))^3$. En étudiant la limite des deux membres de cette égalité pour t tendant vers $+\infty$, en déduire que $\ell = 0$.
 - (d) Déterminer un équivalent de u(t) lorsque t tend vers $+\infty$.
- **3.** Pour tout $n \in \mathbb{N}$, on pose $a_n = \int_0^1 t^n \sqrt{1 t^2} dt$.
 - (1) Calculer a_0 et a_1 .
 - (2) Écrire en Python une fonction prenant en entrée un entier n et calculant une valeur approchée du nombre a_n .
 - (3) Montrer que la suite $(a_n)_{n\in\mathbb{N}}$ est décroissante.
 - (4) Montrer que, pour tout $n \in \mathbb{N}$, $a_{n+2} = \frac{n+1}{n+4}a_n$.
 - (5) À l'aide d'un encadrement du quotient $\frac{a_{n+1}}{a_n}$, montrer que $a_n \sim a_{n+1}$ lorsque $n \to +\infty$.
 - (6) Montrer que la suite de terme général $(n+1)(n+2)(n+3)a_na_{n+1}$ est constante; en déduire un réel C>0 tel que $a_n \sim \frac{C}{n^{3/2}}$.
 - (7) Quelle est la nature de la série de terme général a_n ?

- **4.** Pour tout $n \in \mathbb{N}$, on pose $u_n = \arctan\left(\frac{1}{n^2+3n+3}\right)$.
 - (1) Montrer que, pour tout $x \ge 0$, on a $0 \le \arctan x \le x$.
 - (2) En déduire que la série de terme général u_n est convergente.
 - (3) Ecrire en Python une fonction calculant une valeur approchée de la somme de la série. On pourra calculer les arctangentes à l'aide de la fonction math.atan.
 - (4) (a) Montrer que, pour tous $a,b\in\mathbf{R}$ tels que ces expressions soient bien définies, on a :

$$\tan(a-b) = \frac{\tan a - \tan b}{1 + \tan a \tan b}.$$

(b) Vérifier que, pour tout $n \in \mathbb{N}$,

$$\frac{1}{n^2 + 3n + 3} = \frac{(n+2) - (n+1)}{1 + (n+2)(n+1)}.$$

En déduire que, pour tout $n \in \mathbb{N}$, $u_n = \arctan(n+2) - \arctan(n+1)$.

- (c) Calculer la somme de la série de terme général u_n .
- 5. On s'intéresse à l'équation différentielle (E): $y'-y=e^{-x^2}$ sur \mathbf{R} . Pour tout $x\in\mathbf{R}$, on pose

$$u(x) = \int_0^x e^{-t^2 - t} dt.$$

- (1) Justifier que la fonction u est bien définie et dérivable sur \mathbf{R} et calculer sa dérivée.
- (2) Exprimer les solutions de (E) en fonction de u.
- (3) Justifier que la fonction $t \mapsto e^{-t^2-t}$ est intégrable sur **R**; en déduire que la fonction u possède des limites finies en $\pm \infty$.
- (4) En déduire que toutes les solutions de (E) tendent vers 0 en $-\infty$.
- (5) Montrer qu'il existe une (et une seule) solution de (E) qui tende vers 0 en $+\infty$.
- **6.** Soit $(d_n)_{n\geq 0}$ définie par $d_0=1, d_1=0$ et, pour tout $n\in \mathbb{N}, d_{n+2}=(n+1)(d_{n+1}+d_n)$.
 - (1) Calculer d_2 et d_3 .
 - (2) Montrer que, pour tout $n \ge 2$, $\frac{n!}{3} \le d_n \le n!$.
 - (3) On s'intéresse à la série entière $S(x) = \sum \frac{d_n}{n!} x^n$; déterminer son rayon de convergence R.
 - (4) Montrer que, pour tout $x \in]-R; R[, (1-x)S'(x) = xS(x).$
 - (5) En déduire une expression de S.
- 7. Soit f la fonction définie sur R par $f(x) = |\sin x|$.
 - (1) Tracer l'allure de la fonction f et justifier que sa série de Fourier est de la forme

$$a_0 + \sum_{n=1}^{+\infty} a_n \cos(2nx)$$

(on ne demande pas de calculer explicitement les coefficients de Fourier).

- (2) Justifier que f est égale à la somme de sa série de Fourier.
- (3) En déduire qu'il existe une suite réelle $(c_n)_{n\in\mathbb{N}}$ telle que, pour tout $x\in\mathbb{R}$,

$$f(x) = \sum_{n=0}^{+\infty} c_n \cos^2(nx).$$

(4) Calculer la somme de la série de terme général c_{2n} .