1. Dessiner l'allure des arcs paramétrés suivants au voisinage du point de paramètre t=0 :

(1)
$$x(t) = t + 2t^2 - t^3$$
, $y(t) = t + 2t^2 - t^7$;

(2)
$$x(t) = -1 - t + t^2$$
, $y(t) = t^2 + t^3$;

(3)
$$x(t) = -t^2 - 2t^3$$
, $y(t) = 1 - t^3 - t^5$;

(4)
$$x(t) = t^2 + 3t^3 + t^4$$
, $y(t) = -2t^2 - 6t^3 + t^4$

2. On considère un arc paramétré dont le tableau de variation des fonctions coordonnées est :

t	0		1		$\sqrt{3}$		$+\infty$
x'(t)	0	+		+		+	
x(t)	1	7	$+\infty$ $\ -\infty$	7	$-\frac{1}{2}$	7	0
y(t)	0	7	1	7	$\frac{3\sqrt{3}}{2}$	×	$-\infty$
y'(t)	0		+		0	_	

À la lecture de ce tableau, déterminer les points stationnaires, les tangentes horizontales ou verticales, les éventulles asymptotes, puis proposer un tracé de courbe pouvant correspondre à ce tableau.

3. Tracer les courbes paramétrées suivantes :

$$(1) \begin{cases} x = \sin(3t) \\ y = \cos(2t) \end{cases}$$

$$(2) \begin{cases} x = \frac{1}{2}(3\cos(t) - \cos(3t)) \\ y = \frac{1}{2}(3\sin(t) - \sin(3t)) \end{cases}$$

$$(3) \begin{cases} x = \frac{t^3}{t-1} \\ y = \frac{t^2}{t-1} \end{cases}$$

$$(4) \begin{cases} x = t\exp(\frac{2}{t}) \\ y = (t-2)\exp(-\frac{1}{t}) \end{cases}$$

$$(5) \begin{cases} x = \frac{t^2+1}{t^2-1} \\ y = \frac{4t}{t^2-1} \end{cases}$$

$$(6) \begin{cases} x = \frac{3t}{1+t^3} \\ y = \frac{3t^2}{1+t^3} \end{cases}$$

4. Tracer la courbe Γ : $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$ puis calculer sa longueur.

1. Dessiner l'allure des arcs paramétrés suivants au voisinage du point de paramètre t=0 :

(1)
$$x(t) = t + 2t^2 - t^3$$
, $y(t) = t + 2t^2 - t^7$;

(2)
$$x(t) = -1 - t + t^2$$
, $y(t) = t^2 + t^3$;

TSI2

(3)
$$x(t) = -t^2 - 2t^3$$
, $y(t) = 1 - t^3 - t^5$;

(4)
$$x(t) = t^2 + 3t^3 + t^4$$
, $y(t) = -2t^2 - 6t^3 + t^4$.

2. On considère un arc paramétré dont le tableau de variation des fonctions coordonnées est :

t	0		1		$\sqrt{3}$		$+\infty$
x'(t)	0	+		+		+	
x(t)	1	7	$+\infty$ $\ -\infty$	7	$-\frac{1}{2}$	7	0
y(t)	0	7	1	7	$\frac{3\sqrt{3}}{2}$	\searrow	$-\infty$
y'(t)	0		+		0	_	

À la lecture de ce tableau, déterminer les points stationnaires, les tangentes horizontales ou verticales, les éventulles asymptotes, puis proposer un tracé de courbe pouvant correspondre à ce tableau.

3. Tracer les courbes paramétrées suivantes :

(1)
$$\begin{cases} x = \sin(3t) \\ y = \cos(2t) \end{cases}$$
(2)
$$\begin{cases} x = \frac{1}{2}(3\cos(t) - \cos(3t)) \\ y = \frac{1}{2}(3\sin(t) - \sin(3t)) \end{cases}$$
(3)
$$\begin{cases} x = \frac{t^3}{t-1} \\ y = \frac{t^2}{t-1} \end{cases}$$
(6)
$$\begin{cases} x = t\exp(\frac{2}{t}) \\ y = (t-2)\exp(-\frac{1}{t}) \end{cases}$$

$$\begin{cases} x = \frac{t^2+1}{t^2-1} \\ y = \frac{4t}{t^2-1} \\ y = \frac{3t^2}{1+t^3} \end{cases}$$

4. Tracer la courbe Γ : $\begin{cases} x = \cos^3 t \\ y = \sin^3 t \end{cases}$ puis calculer sa longueur.