1. Dans l'espace muni d'un repère orthonormé, déterminer les coordonnées du projeté orthogonal H du point M(-2;4;0) sur la droite \mathcal{D} définie par le système d'équations cartésiennes :

$$\mathcal{D} \colon \left\{ \begin{array}{l} x+y-z=1 \\ x-2y+z=0 \end{array} \right.$$

- **2.** Dans le plan muni d'un repère orthonormé, on considère les points A(3;2), B(-1;-2) et $\Omega(2;-1)$. Déterminer l'intersection de la droite (AB) avec le cercle de centre Ω et de rayon 2.
- 3. Écrire sous forme algébrique le nombre $(1 i\sqrt{3})^{2025}$.
- 4. Résoudre dans ${\bf C}$ les équations suivantes :
 - (1) $z^2 (1+i)z + 5i = 0$.
 - (2) $z^4 = -1$.
 - (3) $z^6 = \frac{-4}{1+i\sqrt{3}}$

5.

- (1) Déterminer sous forme algébrique les racines carrées du nombre complexe 3-4i.
- (2) Résoudre dans C l'équation $w^2 iw 1 + i = 0$.
- (3) Rappeler quelles sont les racines cubiques de 1.
- (4) Écrire -1 + i sous forme exponentielle.
- (5) Résoudre l'équation $z^3 = -1 + i$ (donner les solutions sous forme exponentielle).
- (6) En déduire les solutions de l'équation $z^6 iz^3 1 + i = 0$.
- **6.** Soit $U=\{z\in {\bf C}\mid |z|=1\}$ le cercle unité. Soit $a\in {\bf C}\setminus U$. Montrer que l'application :

$$f_a \colon z \mapsto \frac{z+a}{1+\bar{a}z}$$

définit une bijection de U dans lui-même. Donner l'expression de f_a^{-1} .

7. Soit $u \in \mathcal{L}_3(\mathbf{R})$ dont la matrice dans la base canonique est :

$$M = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \in \mathcal{M}_3(\mathbf{R}).$$

On définit également $H=\{(x,y,z)\in\mathbf{R}^3\mid x+y+z=0\}$ et $D=\mathrm{Vect}((1,0,1)).$

- (1) Montrer que $\mathbf{R}^3 = H \oplus D$.
- (2) Montrer que H et D sont stables par u.
- (3) Écrire la matrice de u dans une base adaptée à la somme directe ci-dessus.
- 8. Dans $E = \mathbf{R}_2[X]$, on note \mathcal{B} la famille $(X^2 + 1, X + 1, 2X^2 X)$.
 - (1) Vérifier que \mathcal{B} est une base de $\mathbf{R}_2[X]$.
 - (2) Déterminer la matrice de passage de la base canonique vers la base $\mathcal B$ puis celle de la base $\mathcal B$ vers la base canonique.
 - (3) Déterminer les coordonnnées du polynôme $P = X^2 X + 2$ dans la base \mathcal{B} .
 - (4) On considère l'endomorphisme φ de E défini pour tout $P \in E$ par $\varphi(P) = XP'$. Déterminer la matrice de φ dans la base canonique et dans la base \mathcal{B} .

- 9. Un insecte pond des œufs. Le nombre d'œufs pondus suit une loi de Poisson de paramètre $\lambda > 0$. Chaque œuf, de manière indépendante des autres œufs, peut éclore avec probabilité $p \in]0;1[$. On note X le nombre d'œufs pondus et Y le nombre d'œufs éclos.
 - (1) Rappeler la loi de X, son espérance et sa variance.
 - (2) Soient $k, n \in \mathbb{N}$. Donner la probabilité conditionnelle $\mathbf{P}(Y = n \mid X = k)$. On pourra distinguer les cas k < n et $k \ge n$.
 - (3) En déduire la loi de la variable aléatoire Y.
- 10. On note ϕ l'unique solution positive réelle de l'équation $x^2 x 1 = 0$.
 - (1) Vérifier que $\phi = \sqrt{1+\phi}$.
 - (2) Justifier que $1 < \phi < 2$.

On considère la suite $(u_n)_{n \in \mathbb{N}^*}$ définie par :

$$u_1 = \sqrt{1}, \quad u_2 = \sqrt{1 + \sqrt{1}}, \quad u_3 = \sqrt{1 + \sqrt{1 + \sqrt{1}}},$$

et plus généralement :

$$u_n = \sqrt{1 + \dots + \sqrt{1 + \sqrt{1}}}$$

avec n symboles « racine carrée ».

- (3) Donner une relation de récurrence vérifiée par la suite $(u_n)_{n \in \mathbb{N}^*}$.
- (4) Montrer que, pour tout, $n \in \mathbf{N}^*$, $1 \le u_n \le \phi$.
- (5) Montrer que la suite $(u_n)_{n \in \mathbb{N}^*}$ est croissante.
- (6) Montrer que la suite $(u_n)_{n \in \mathbb{N}^*}$ converge vers ϕ .
- (7) Montrer que, pour tout $n \ge 1$, $|u_{n+1} \phi| \le \frac{1}{2} |u_n \phi|$. En déduire que $|u_n \phi| \le 2^{-n+1}$ pour tout $n \in \mathbb{N}^*$.
- 11. Résoudre les équations différentielles suivantes :
 - (1) $(x \ln x)y' y = -\frac{1+\ln x}{x} \text{ sur }]1; +\infty[.$
 - (2) $xy' + 2y = \frac{x}{1+x^2} \text{ sur }]-\infty; 0[.$
 - (3) $y'\cos^2 x y = e^{\tan x} \sup \left[-\frac{\pi}{2}; \frac{\pi}{2} \right[$.
- 12. Sur $I = \sqrt{3}$; $+\infty$, on s'intéresse à l'équation :

(E):
$$(x^2 - 3)y'' - 4xy' + 6y = 0$$
.

- (1) Déterminer les solutions polynômiales de (E) (on pourra commencer par déterminer le degré d'une éventuelle telle solution).
- (2) En déduire l'ensemble des solutions de (E) sur I.
- 13. Déterminer l'ensemble des solutions développables en série entière de l'équation :

(E):
$$x(x-1)y'' + 3xy' + y = 0$$
.

Cette équation admet-elle des solutions non développables en série entière?

- **14.** Soit (E_1) l'équation différentielle $y^{(3)} = y$.
 - (1) Soit f une solution à valeurs complexes de (E_1) . On pose g = f + f' + f''. Déterminer une équation différentielle (E_2) du premier ordre vérifiée par g.
 - (2) Résoudre (E_2) .
 - (3) Résoudre (E_1) .