1. Pour tout entier naturel n, on pose :

$$I_n = \int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{(x^2+1)^{n+1}}.$$

- (1) Pour tout entier naturel n, étudier la convergence de I_n . Que vaut I_0 ?
- (2) Montrer que, pour tout entier naturel n non nul, $I_n = \frac{(2n-1)I_{n-1}}{2n}$.
- (3) En déduire une expression de I_n en fonction de n pour tout $n \in \mathbb{N}$.

2. Justifier la convergence puis calculer les intégrales suivantes :

$$(1) \int_0^{+\infty} \frac{\arctan t}{1+t^2} \, \mathrm{d}t.$$

(2)
$$\int_0^{+\infty} \ln\left(1 + \frac{1}{t^2}\right) dt$$
 (on pourra procéder par intégration par parties).

(3)
$$\int_0^1 \frac{\mathrm{d}t}{\sqrt{t(1-t)}}$$
 (on pourra utiliser le changement de variable $t=\sin^2(u)$).

(4)
$$\int_0^{\pi} \frac{\mathrm{d}t}{2 + \cos t}$$
 (on pourra utiliser le changement de variable $u = \tan\left(\frac{t}{2}\right)$).

3. Montrer la convergence et calculer la somme de la série :

$$\sum_{n>3} \frac{4n-3}{n(n^2-4)}.$$

On pourra déterminer des réels a, b, c tels que, pour tout $n \geq 3$,

$$\frac{4n-3}{n(n^2-4)} = \frac{a}{n} + \frac{b}{n-2} + \frac{c}{n+2}.$$

4. Déterminer la nature des séries suivantes :

$$(1) \sum -\ln\left(1-\frac{1}{n^2}\right).$$

$$(3) \sum \frac{e^{in}}{n^2 + i}.$$

$$(2) \sum \left(\frac{1}{n} - \ln\left(1 + \frac{1}{n}\right)\right).$$

$$(4) \sum \left(\frac{(-1)^n}{\sqrt{n}} + \frac{1}{n}\right).$$

5. On considère la fonction $\zeta \colon x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n^x}$.

- (1) Donner le domaine de définition de ζ .
- (2) À l'aide d'une comparaison avec une intégrale, montrer que, pour tous $m > n \in \mathbb{N}$ et x > 1,

$$\frac{1}{x-1} \left(\frac{1}{(n+1)^{x-1}} - \frac{1}{(m+1)^{x-1}} \right) \le \sum_{k=n+1}^{m} \frac{1}{k^x} \le \frac{1}{x-1} \left(\frac{1}{n^x} - \frac{1}{m^x} \right).$$

- (3) Montrer que $\zeta(x) \sim \frac{1}{x-1}$ lorsque $x \to 1$.
- (4) Étudier la nature de la série $\sum_{n\geq 2} (\zeta(n)-1)$.

- 6. On considère 4 pages Web reliées par des liens hypertexte :
 - La page A contient un lien vers B, un lien vers C et un lien vers D.
 - La page B contient un lien vers A et un lien vers C.
 - La page C contient un lien vers D.
 - La page D contient un lien vers A et un lien vers C.

Une personne navigue sur ce mini-Internet; elle démarre sur la page A puis, pour chaque page consultée, clique au hasard (de manière équiprobable) sur l'un des liens qu'elle contient.

Pour tout $n \in \mathbb{N}^*$, notons A_n l'événement « la n-ème page visitée est A » et notons a_n sa probabilité (et de même, B_n , b_n , etc.)

- (1) Déterminer, pour tout $n \in \mathbb{N}$, une relation entre a_{n+1} , a_n , b_n , c_n et d_n .
- (2) Déterminer des formules analogues pour b_{n+1} , c_{n+1} et d_{n+1} .
- (3) Pour tout $n \in \mathbf{N}^*$, on pose $X_n = (a_n, b_n, c_n, d_n)^\mathsf{T} \in \mathbf{R}^4$. Déterminer une matrice $M \in \mathcal{M}_4(\mathbf{R})$ telle que, pour tout $n \in \mathbf{N}^*$, $X_{n+1} = MX_n$.
- (4) Justifier, sans faire aucun calcul, que M n'est pas inversible. Que peut-on en déduire concernant le spectre de M?
- (5) Calculer la somme des lignes de M; en déduire que 1 est une valeur propre de M^{T} et donner un vecteur propre correspondant. Que peut-on en déduire concernant le spectre de M?
- (6) Déterminer le spectre de M et justifier qu'elle est diagonalisable.
- (7) Expliquer comment utiliser la diagonalisabilité de M pour calculer les valeurs de a_n , b_n , c_n et d_n pour tout $n \in \mathbb{N}^*$. On ne demande pas de réaliser les calculs.

La valeur des limites de a_n , b_n , c_n et d_n est l'un des éléments sur lesquels s'appuie l'algorithme PageRank utilisé par Google pour classer les résultats des requêtes adressées à son moteur de recherche.

7. Tracer les courbes paramétrées :

(1)
$$\begin{cases} x(t) = 6t - 9t^2 + 4t^3 \\ 6t - 3t^2 - 4t^3 \end{cases}$$
 (2)
$$\begin{cases} x(t) = \cos(t) + \ln(|\tan(\frac{t}{2})|) \\ y(t) = \sin(t) \end{cases}$$

8. Soit Γ la courbe de l'espace paramétrée par :

$$\begin{cases} x(t) = t \\ y(t) = t^2 \\ z(t) = t^3 \end{cases}$$

- (1) Déterminer un paramétrage de la tangente à Γ au point M(t) de paramètre t.
- (2) Déterminer l'ensemble des paramètres t tels que la famille $(\overline{OM}'(t), \overline{OM}''(t))$ soit libre (de tels points sont dits $bir\acute{e}quliers$).
- (3) En tout point birégulier M(t), déterminer une équation cartésienne du plan passant par M(t) et dirigé par les vecteurs $\overline{OM}'(t)$ et $\overline{OM}''(t)$ (appelé plan osculateur de la courbe).
- **9.** On considère la surface $S: x^2 + y^2 = z$. Justifier que tous les points de S sont réguliers, puis déterminer l'ensemble des plants tangents à S contenant la droite $D: \begin{cases} x y = -1 \\ 2x z = -1 \end{cases}$